Step |
Hyp |
Ref |
Expression |
1 |
|
lplnri1.j |
|- .\/ = ( join ` K ) |
2 |
|
lplnri1.a |
|- A = ( Atoms ` K ) |
3 |
|
lplnri1.p |
|- P = ( LPlanes ` K ) |
4 |
|
lplnri1.y |
|- Y = ( ( Q .\/ R ) .\/ S ) |
5 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
6 |
5 1 2 3 4
|
lplnriaN |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> -. Q ( le ` K ) ( R .\/ S ) ) |
7 |
|
simpl1 |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) /\ ( Q .\/ S ) = ( R .\/ S ) ) -> K e. HL ) |
8 |
|
simpl21 |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) /\ ( Q .\/ S ) = ( R .\/ S ) ) -> Q e. A ) |
9 |
|
simpl23 |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) /\ ( Q .\/ S ) = ( R .\/ S ) ) -> S e. A ) |
10 |
5 1 2
|
hlatlej1 |
|- ( ( K e. HL /\ Q e. A /\ S e. A ) -> Q ( le ` K ) ( Q .\/ S ) ) |
11 |
7 8 9 10
|
syl3anc |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) /\ ( Q .\/ S ) = ( R .\/ S ) ) -> Q ( le ` K ) ( Q .\/ S ) ) |
12 |
|
simpr |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) /\ ( Q .\/ S ) = ( R .\/ S ) ) -> ( Q .\/ S ) = ( R .\/ S ) ) |
13 |
11 12
|
breqtrd |
|- ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) /\ ( Q .\/ S ) = ( R .\/ S ) ) -> Q ( le ` K ) ( R .\/ S ) ) |
14 |
13
|
ex |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> ( ( Q .\/ S ) = ( R .\/ S ) -> Q ( le ` K ) ( R .\/ S ) ) ) |
15 |
14
|
necon3bd |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> ( -. Q ( le ` K ) ( R .\/ S ) -> ( Q .\/ S ) =/= ( R .\/ S ) ) ) |
16 |
6 15
|
mpd |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> ( Q .\/ S ) =/= ( R .\/ S ) ) |