Metamath Proof Explorer


Theorem lplnllnneN

Description: Two lattice lines defined by atoms defining a lattice plane are not equal. (Contributed by NM, 9-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lplnri1.j
|- .\/ = ( join ` K )
lplnri1.a
|- A = ( Atoms ` K )
lplnri1.p
|- P = ( LPlanes ` K )
lplnri1.y
|- Y = ( ( Q .\/ R ) .\/ S )
Assertion lplnllnneN
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> ( Q .\/ S ) =/= ( R .\/ S ) )

Proof

Step Hyp Ref Expression
1 lplnri1.j
 |-  .\/ = ( join ` K )
2 lplnri1.a
 |-  A = ( Atoms ` K )
3 lplnri1.p
 |-  P = ( LPlanes ` K )
4 lplnri1.y
 |-  Y = ( ( Q .\/ R ) .\/ S )
5 eqid
 |-  ( le ` K ) = ( le ` K )
6 5 1 2 3 4 lplnriaN
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> -. Q ( le ` K ) ( R .\/ S ) )
7 simpl1
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) /\ ( Q .\/ S ) = ( R .\/ S ) ) -> K e. HL )
8 simpl21
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) /\ ( Q .\/ S ) = ( R .\/ S ) ) -> Q e. A )
9 simpl23
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) /\ ( Q .\/ S ) = ( R .\/ S ) ) -> S e. A )
10 5 1 2 hlatlej1
 |-  ( ( K e. HL /\ Q e. A /\ S e. A ) -> Q ( le ` K ) ( Q .\/ S ) )
11 7 8 9 10 syl3anc
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) /\ ( Q .\/ S ) = ( R .\/ S ) ) -> Q ( le ` K ) ( Q .\/ S ) )
12 simpr
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) /\ ( Q .\/ S ) = ( R .\/ S ) ) -> ( Q .\/ S ) = ( R .\/ S ) )
13 11 12 breqtrd
 |-  ( ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) /\ ( Q .\/ S ) = ( R .\/ S ) ) -> Q ( le ` K ) ( R .\/ S ) )
14 13 ex
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> ( ( Q .\/ S ) = ( R .\/ S ) -> Q ( le ` K ) ( R .\/ S ) ) )
15 14 necon3bd
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> ( -. Q ( le ` K ) ( R .\/ S ) -> ( Q .\/ S ) =/= ( R .\/ S ) ) )
16 6 15 mpd
 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) /\ Y e. P ) -> ( Q .\/ S ) =/= ( R .\/ S ) )