Metamath Proof Explorer


Theorem lplnllnneN

Description: Two lattice lines defined by atoms defining a lattice plane are not equal. (Contributed by NM, 9-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lplnri1.j = ( join ‘ 𝐾 )
lplnri1.a 𝐴 = ( Atoms ‘ 𝐾 )
lplnri1.p 𝑃 = ( LPlanes ‘ 𝐾 )
lplnri1.y 𝑌 = ( ( 𝑄 𝑅 ) 𝑆 )
Assertion lplnllnneN ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → ( 𝑄 𝑆 ) ≠ ( 𝑅 𝑆 ) )

Proof

Step Hyp Ref Expression
1 lplnri1.j = ( join ‘ 𝐾 )
2 lplnri1.a 𝐴 = ( Atoms ‘ 𝐾 )
3 lplnri1.p 𝑃 = ( LPlanes ‘ 𝐾 )
4 lplnri1.y 𝑌 = ( ( 𝑄 𝑅 ) 𝑆 )
5 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
6 5 1 2 3 4 lplnriaN ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → ¬ 𝑄 ( le ‘ 𝐾 ) ( 𝑅 𝑆 ) )
7 simpl1 ( ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) ∧ ( 𝑄 𝑆 ) = ( 𝑅 𝑆 ) ) → 𝐾 ∈ HL )
8 simpl21 ( ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) ∧ ( 𝑄 𝑆 ) = ( 𝑅 𝑆 ) ) → 𝑄𝐴 )
9 simpl23 ( ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) ∧ ( 𝑄 𝑆 ) = ( 𝑅 𝑆 ) ) → 𝑆𝐴 )
10 5 1 2 hlatlej1 ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴 ) → 𝑄 ( le ‘ 𝐾 ) ( 𝑄 𝑆 ) )
11 7 8 9 10 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) ∧ ( 𝑄 𝑆 ) = ( 𝑅 𝑆 ) ) → 𝑄 ( le ‘ 𝐾 ) ( 𝑄 𝑆 ) )
12 simpr ( ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) ∧ ( 𝑄 𝑆 ) = ( 𝑅 𝑆 ) ) → ( 𝑄 𝑆 ) = ( 𝑅 𝑆 ) )
13 11 12 breqtrd ( ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) ∧ ( 𝑄 𝑆 ) = ( 𝑅 𝑆 ) ) → 𝑄 ( le ‘ 𝐾 ) ( 𝑅 𝑆 ) )
14 13 ex ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → ( ( 𝑄 𝑆 ) = ( 𝑅 𝑆 ) → 𝑄 ( le ‘ 𝐾 ) ( 𝑅 𝑆 ) ) )
15 14 necon3bd ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → ( ¬ 𝑄 ( le ‘ 𝐾 ) ( 𝑅 𝑆 ) → ( 𝑄 𝑆 ) ≠ ( 𝑅 𝑆 ) ) )
16 6 15 mpd ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ∧ 𝑌𝑃 ) → ( 𝑄 𝑆 ) ≠ ( 𝑅 𝑆 ) )