| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p |  |-  .(+) = ( LSSum ` G ) | 
						
							| 2 |  | lsmcntz.s |  |-  ( ph -> S e. ( SubGrp ` G ) ) | 
						
							| 3 |  | lsmcntz.t |  |-  ( ph -> T e. ( SubGrp ` G ) ) | 
						
							| 4 |  | lsmcntz.u |  |-  ( ph -> U e. ( SubGrp ` G ) ) | 
						
							| 5 |  | lsmdisj.o |  |-  .0. = ( 0g ` G ) | 
						
							| 6 |  | lsmdisjr.i |  |-  ( ph -> ( S i^i ( T .(+) U ) ) = { .0. } ) | 
						
							| 7 |  | lsmdisj2r.i |  |-  ( ph -> ( T i^i U ) = { .0. } ) | 
						
							| 8 |  | lsmdisj3r.z |  |-  Z = ( Cntz ` G ) | 
						
							| 9 |  | lsmdisj3r.s |  |-  ( ph -> T C_ ( Z ` U ) ) | 
						
							| 10 | 1 8 | lsmcom2 |  |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) = ( U .(+) T ) ) | 
						
							| 11 | 3 4 9 10 | syl3anc |  |-  ( ph -> ( T .(+) U ) = ( U .(+) T ) ) | 
						
							| 12 | 11 | ineq2d |  |-  ( ph -> ( S i^i ( T .(+) U ) ) = ( S i^i ( U .(+) T ) ) ) | 
						
							| 13 | 12 6 | eqtr3d |  |-  ( ph -> ( S i^i ( U .(+) T ) ) = { .0. } ) | 
						
							| 14 |  | incom |  |-  ( U i^i T ) = ( T i^i U ) | 
						
							| 15 | 14 7 | eqtrid |  |-  ( ph -> ( U i^i T ) = { .0. } ) | 
						
							| 16 | 1 2 4 3 5 13 15 | lsmdisj2r |  |-  ( ph -> ( ( S .(+) T ) i^i U ) = { .0. } ) |