| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p | ⊢  ⊕   =  ( LSSum ‘ 𝐺 ) | 
						
							| 2 |  | lsmcntz.s | ⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 3 |  | lsmcntz.t | ⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 |  | lsmcntz.u | ⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | lsmdisj.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 6 |  | lsmdisjr.i | ⊢ ( 𝜑  →  ( 𝑆  ∩  ( 𝑇  ⊕  𝑈 ) )  =  {  0  } ) | 
						
							| 7 |  | lsmdisj2r.i | ⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  =  {  0  } ) | 
						
							| 8 |  | lsmdisj3r.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 9 |  | lsmdisj3r.s | ⊢ ( 𝜑  →  𝑇  ⊆  ( 𝑍 ‘ 𝑈 ) ) | 
						
							| 10 | 1 8 | lsmcom2 | ⊢ ( ( 𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ⊆  ( 𝑍 ‘ 𝑈 ) )  →  ( 𝑇  ⊕  𝑈 )  =  ( 𝑈  ⊕  𝑇 ) ) | 
						
							| 11 | 3 4 9 10 | syl3anc | ⊢ ( 𝜑  →  ( 𝑇  ⊕  𝑈 )  =  ( 𝑈  ⊕  𝑇 ) ) | 
						
							| 12 | 11 | ineq2d | ⊢ ( 𝜑  →  ( 𝑆  ∩  ( 𝑇  ⊕  𝑈 ) )  =  ( 𝑆  ∩  ( 𝑈  ⊕  𝑇 ) ) ) | 
						
							| 13 | 12 6 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑆  ∩  ( 𝑈  ⊕  𝑇 ) )  =  {  0  } ) | 
						
							| 14 |  | incom | ⊢ ( 𝑈  ∩  𝑇 )  =  ( 𝑇  ∩  𝑈 ) | 
						
							| 15 | 14 7 | eqtrid | ⊢ ( 𝜑  →  ( 𝑈  ∩  𝑇 )  =  {  0  } ) | 
						
							| 16 | 1 2 4 3 5 13 15 | lsmdisj2r | ⊢ ( 𝜑  →  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  =  {  0  } ) |