| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmcntz.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 2 |
|
lsmcntz.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 3 |
|
lsmcntz.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
|
lsmcntz.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
|
lsmdisj.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 6 |
|
lsmdisjr.i |
⊢ ( 𝜑 → ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ) |
| 7 |
|
lsmdisj2r.i |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 8 |
|
eqid |
⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) |
| 9 |
8 1
|
oppglsm |
⊢ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑆 ) = ( 𝑆 ⊕ 𝑈 ) |
| 10 |
9
|
ineq2i |
⊢ ( 𝑇 ∩ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑆 ) ) = ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) |
| 11 |
|
incom |
⊢ ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) |
| 12 |
10 11
|
eqtri |
⊢ ( 𝑇 ∩ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑆 ) ) = ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) |
| 13 |
|
eqid |
⊢ ( LSSum ‘ ( oppg ‘ 𝐺 ) ) = ( LSSum ‘ ( oppg ‘ 𝐺 ) ) |
| 14 |
8
|
oppgsubg |
⊢ ( SubGrp ‘ 𝐺 ) = ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) |
| 15 |
4 14
|
eleqtrdi |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) |
| 16 |
3 14
|
eleqtrdi |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) |
| 17 |
2 14
|
eleqtrdi |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) |
| 18 |
8 5
|
oppgid |
⊢ 0 = ( 0g ‘ ( oppg ‘ 𝐺 ) ) |
| 19 |
8 1
|
oppglsm |
⊢ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) |
| 20 |
19
|
ineq1i |
⊢ ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ∩ 𝑆 ) = ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑆 ) |
| 21 |
|
incom |
⊢ ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑆 ) = ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) |
| 22 |
20 21
|
eqtri |
⊢ ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ∩ 𝑆 ) = ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) |
| 23 |
22 6
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ∩ 𝑆 ) = { 0 } ) |
| 24 |
|
incom |
⊢ ( 𝑇 ∩ 𝑈 ) = ( 𝑈 ∩ 𝑇 ) |
| 25 |
24 7
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑈 ∩ 𝑇 ) = { 0 } ) |
| 26 |
13 15 16 17 18 23 25
|
lsmdisj2 |
⊢ ( 𝜑 → ( 𝑇 ∩ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑆 ) ) = { 0 } ) |
| 27 |
12 26
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ) |