Metamath Proof Explorer


Theorem lsmdisj2r

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p = ( LSSum ‘ 𝐺 )
lsmcntz.s ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
lsmcntz.t ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
lsmcntz.u ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
lsmdisj.o 0 = ( 0g𝐺 )
lsmdisjr.i ( 𝜑 → ( 𝑆 ∩ ( 𝑇 𝑈 ) ) = { 0 } )
lsmdisj2r.i ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
Assertion lsmdisj2r ( 𝜑 → ( ( 𝑆 𝑈 ) ∩ 𝑇 ) = { 0 } )

Proof

Step Hyp Ref Expression
1 lsmcntz.p = ( LSSum ‘ 𝐺 )
2 lsmcntz.s ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
3 lsmcntz.t ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
4 lsmcntz.u ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
5 lsmdisj.o 0 = ( 0g𝐺 )
6 lsmdisjr.i ( 𝜑 → ( 𝑆 ∩ ( 𝑇 𝑈 ) ) = { 0 } )
7 lsmdisj2r.i ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
8 eqid ( oppg𝐺 ) = ( oppg𝐺 )
9 8 1 oppglsm ( 𝑈 ( LSSum ‘ ( oppg𝐺 ) ) 𝑆 ) = ( 𝑆 𝑈 )
10 9 ineq2i ( 𝑇 ∩ ( 𝑈 ( LSSum ‘ ( oppg𝐺 ) ) 𝑆 ) ) = ( 𝑇 ∩ ( 𝑆 𝑈 ) )
11 incom ( 𝑇 ∩ ( 𝑆 𝑈 ) ) = ( ( 𝑆 𝑈 ) ∩ 𝑇 )
12 10 11 eqtri ( 𝑇 ∩ ( 𝑈 ( LSSum ‘ ( oppg𝐺 ) ) 𝑆 ) ) = ( ( 𝑆 𝑈 ) ∩ 𝑇 )
13 eqid ( LSSum ‘ ( oppg𝐺 ) ) = ( LSSum ‘ ( oppg𝐺 ) )
14 8 oppgsubg ( SubGrp ‘ 𝐺 ) = ( SubGrp ‘ ( oppg𝐺 ) )
15 4 14 eleqtrdi ( 𝜑𝑈 ∈ ( SubGrp ‘ ( oppg𝐺 ) ) )
16 3 14 eleqtrdi ( 𝜑𝑇 ∈ ( SubGrp ‘ ( oppg𝐺 ) ) )
17 2 14 eleqtrdi ( 𝜑𝑆 ∈ ( SubGrp ‘ ( oppg𝐺 ) ) )
18 8 5 oppgid 0 = ( 0g ‘ ( oppg𝐺 ) )
19 8 1 oppglsm ( 𝑈 ( LSSum ‘ ( oppg𝐺 ) ) 𝑇 ) = ( 𝑇 𝑈 )
20 19 ineq1i ( ( 𝑈 ( LSSum ‘ ( oppg𝐺 ) ) 𝑇 ) ∩ 𝑆 ) = ( ( 𝑇 𝑈 ) ∩ 𝑆 )
21 incom ( ( 𝑇 𝑈 ) ∩ 𝑆 ) = ( 𝑆 ∩ ( 𝑇 𝑈 ) )
22 20 21 eqtri ( ( 𝑈 ( LSSum ‘ ( oppg𝐺 ) ) 𝑇 ) ∩ 𝑆 ) = ( 𝑆 ∩ ( 𝑇 𝑈 ) )
23 22 6 syl5eq ( 𝜑 → ( ( 𝑈 ( LSSum ‘ ( oppg𝐺 ) ) 𝑇 ) ∩ 𝑆 ) = { 0 } )
24 incom ( 𝑇𝑈 ) = ( 𝑈𝑇 )
25 24 7 syl5eqr ( 𝜑 → ( 𝑈𝑇 ) = { 0 } )
26 13 15 16 17 18 23 25 lsmdisj2 ( 𝜑 → ( 𝑇 ∩ ( 𝑈 ( LSSum ‘ ( oppg𝐺 ) ) 𝑆 ) ) = { 0 } )
27 12 26 syl5eqr ( 𝜑 → ( ( 𝑆 𝑈 ) ∩ 𝑇 ) = { 0 } )