| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p | ⊢  ⊕   =  ( LSSum ‘ 𝐺 ) | 
						
							| 2 |  | lsmcntz.s | ⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 3 |  | lsmcntz.t | ⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 |  | lsmcntz.u | ⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | lsmdisj.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 6 |  | lsmdisjr.i | ⊢ ( 𝜑  →  ( 𝑆  ∩  ( 𝑇  ⊕  𝑈 ) )  =  {  0  } ) | 
						
							| 7 |  | lsmdisj2r.i | ⊢ ( 𝜑  →  ( 𝑇  ∩  𝑈 )  =  {  0  } ) | 
						
							| 8 |  | eqid | ⊢ ( oppg ‘ 𝐺 )  =  ( oppg ‘ 𝐺 ) | 
						
							| 9 | 8 1 | oppglsm | ⊢ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑆 )  =  ( 𝑆  ⊕  𝑈 ) | 
						
							| 10 | 9 | ineq2i | ⊢ ( 𝑇  ∩  ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑆 ) )  =  ( 𝑇  ∩  ( 𝑆  ⊕  𝑈 ) ) | 
						
							| 11 |  | incom | ⊢ ( 𝑇  ∩  ( 𝑆  ⊕  𝑈 ) )  =  ( ( 𝑆  ⊕  𝑈 )  ∩  𝑇 ) | 
						
							| 12 | 10 11 | eqtri | ⊢ ( 𝑇  ∩  ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑆 ) )  =  ( ( 𝑆  ⊕  𝑈 )  ∩  𝑇 ) | 
						
							| 13 |  | eqid | ⊢ ( LSSum ‘ ( oppg ‘ 𝐺 ) )  =  ( LSSum ‘ ( oppg ‘ 𝐺 ) ) | 
						
							| 14 | 8 | oppgsubg | ⊢ ( SubGrp ‘ 𝐺 )  =  ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) | 
						
							| 15 | 4 14 | eleqtrdi | ⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) | 
						
							| 16 | 3 14 | eleqtrdi | ⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) | 
						
							| 17 | 2 14 | eleqtrdi | ⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) | 
						
							| 18 | 8 5 | oppgid | ⊢  0   =  ( 0g ‘ ( oppg ‘ 𝐺 ) ) | 
						
							| 19 | 8 1 | oppglsm | ⊢ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 )  =  ( 𝑇  ⊕  𝑈 ) | 
						
							| 20 | 19 | ineq1i | ⊢ ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 )  ∩  𝑆 )  =  ( ( 𝑇  ⊕  𝑈 )  ∩  𝑆 ) | 
						
							| 21 |  | incom | ⊢ ( ( 𝑇  ⊕  𝑈 )  ∩  𝑆 )  =  ( 𝑆  ∩  ( 𝑇  ⊕  𝑈 ) ) | 
						
							| 22 | 20 21 | eqtri | ⊢ ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 )  ∩  𝑆 )  =  ( 𝑆  ∩  ( 𝑇  ⊕  𝑈 ) ) | 
						
							| 23 | 22 6 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 )  ∩  𝑆 )  =  {  0  } ) | 
						
							| 24 |  | incom | ⊢ ( 𝑇  ∩  𝑈 )  =  ( 𝑈  ∩  𝑇 ) | 
						
							| 25 | 24 7 | eqtr3id | ⊢ ( 𝜑  →  ( 𝑈  ∩  𝑇 )  =  {  0  } ) | 
						
							| 26 | 13 15 16 17 18 23 25 | lsmdisj2 | ⊢ ( 𝜑  →  ( 𝑇  ∩  ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑆 ) )  =  {  0  } ) | 
						
							| 27 | 12 26 | eqtr3id | ⊢ ( 𝜑  →  ( ( 𝑆  ⊕  𝑈 )  ∩  𝑇 )  =  {  0  } ) |