| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmcntz.p |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 2 |
|
lsmcntz.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 3 |
|
lsmcntz.t |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
|
lsmcntz.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
|
lsmdisj.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 6 |
|
lsmdisj.i |
⊢ ( 𝜑 → ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ) |
| 7 |
|
lsmdisj2.i |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = { 0 } ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 9 |
8 1
|
lsmelval |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑆 ⊕ 𝑈 ) ↔ ∃ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) ) |
| 10 |
2 4 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ⊕ 𝑈 ) ↔ ∃ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) ) |
| 11 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑠 ∈ 𝑆 ) |
| 12 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 13 |
2 12
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝐺 ∈ Grp ) |
| 15 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 17 |
16
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 18 |
15 17
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 19 |
18 11
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑠 ∈ ( Base ‘ 𝐺 ) ) |
| 20 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 21 |
16 8 5 20
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) = 0 ) |
| 22 |
14 19 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) = 0 ) |
| 23 |
22
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) ( +g ‘ 𝐺 ) 𝑢 ) = ( 0 ( +g ‘ 𝐺 ) 𝑢 ) ) |
| 24 |
20
|
subginvcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑠 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ∈ 𝑆 ) |
| 25 |
15 11 24
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ∈ 𝑆 ) |
| 26 |
18 25
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ∈ ( Base ‘ 𝐺 ) ) |
| 27 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 28 |
16
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 29 |
27 28
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 30 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑢 ∈ 𝑈 ) |
| 31 |
29 30
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑢 ∈ ( Base ‘ 𝐺 ) ) |
| 32 |
16 8
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) ( +g ‘ 𝐺 ) 𝑢 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) ) |
| 33 |
14 26 19 31 32
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) 𝑠 ) ( +g ‘ 𝐺 ) 𝑢 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) ) |
| 34 |
16 8 5
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g ‘ 𝐺 ) 𝑢 ) = 𝑢 ) |
| 35 |
14 31 34
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 0 ( +g ‘ 𝐺 ) 𝑢 ) = 𝑢 ) |
| 36 |
23 33 35
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) = 𝑢 ) |
| 37 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 38 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) |
| 39 |
8 1
|
lsmelvali |
⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ∈ 𝑆 ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) ∈ ( 𝑆 ⊕ 𝑇 ) ) |
| 40 |
15 37 25 38 39
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑠 ) ( +g ‘ 𝐺 ) ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ) ∈ ( 𝑆 ⊕ 𝑇 ) ) |
| 41 |
36 40
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑢 ∈ ( 𝑆 ⊕ 𝑇 ) ) |
| 42 |
41 30
|
elind |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑢 ∈ ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ) |
| 43 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ) |
| 44 |
42 43
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑢 ∈ { 0 } ) |
| 45 |
|
elsni |
⊢ ( 𝑢 ∈ { 0 } → 𝑢 = 0 ) |
| 46 |
44 45
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑢 = 0 ) |
| 47 |
46
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = ( 𝑠 ( +g ‘ 𝐺 ) 0 ) ) |
| 48 |
16 8 5
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 0 ) = 𝑠 ) |
| 49 |
14 19 48
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑠 ( +g ‘ 𝐺 ) 0 ) = 𝑠 ) |
| 50 |
47 49
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = 𝑠 ) |
| 51 |
50 38
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑠 ∈ 𝑇 ) |
| 52 |
11 51
|
elind |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑠 ∈ ( 𝑆 ∩ 𝑇 ) ) |
| 53 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑆 ∩ 𝑇 ) = { 0 } ) |
| 54 |
52 53
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑠 ∈ { 0 } ) |
| 55 |
|
elsni |
⊢ ( 𝑠 ∈ { 0 } → 𝑠 = 0 ) |
| 56 |
54 55
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → 𝑠 = 0 ) |
| 57 |
56 46
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = ( 0 ( +g ‘ 𝐺 ) 0 ) ) |
| 58 |
16 5
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 59 |
16 8 5
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 60 |
13 58 59
|
syl2anc2 |
⊢ ( 𝜑 → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 61 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 62 |
57 61
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) ∧ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = 0 ) |
| 63 |
62
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) → ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = 0 ) ) |
| 64 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) → ( 𝑥 ∈ 𝑇 ↔ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 ) ) |
| 65 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) → ( 𝑥 = 0 ↔ ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = 0 ) ) |
| 66 |
64 65
|
imbi12d |
⊢ ( 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) → ( ( 𝑥 ∈ 𝑇 → 𝑥 = 0 ) ↔ ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) ∈ 𝑇 → ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) = 0 ) ) ) |
| 67 |
63 66
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ 𝑆 ∧ 𝑢 ∈ 𝑈 ) ) → ( 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) → ( 𝑥 ∈ 𝑇 → 𝑥 = 0 ) ) ) |
| 68 |
67
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝑆 ∃ 𝑢 ∈ 𝑈 𝑥 = ( 𝑠 ( +g ‘ 𝐺 ) 𝑢 ) → ( 𝑥 ∈ 𝑇 → 𝑥 = 0 ) ) ) |
| 69 |
10 68
|
sylbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ⊕ 𝑈 ) → ( 𝑥 ∈ 𝑇 → 𝑥 = 0 ) ) ) |
| 70 |
69
|
impcomd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑆 ⊕ 𝑈 ) ) → 𝑥 = 0 ) ) |
| 71 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) ↔ ( 𝑥 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑆 ⊕ 𝑈 ) ) ) |
| 72 |
|
velsn |
⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
| 73 |
70 71 72
|
3imtr4g |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) → 𝑥 ∈ { 0 } ) ) |
| 74 |
73
|
ssrdv |
⊢ ( 𝜑 → ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) ⊆ { 0 } ) |
| 75 |
5
|
subg0cl |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑇 ) |
| 76 |
3 75
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝑇 ) |
| 77 |
1
|
lsmub1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( 𝑆 ⊕ 𝑈 ) ) |
| 78 |
2 4 77
|
syl2anc |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑆 ⊕ 𝑈 ) ) |
| 79 |
5
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑆 ) |
| 80 |
2 79
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝑆 ) |
| 81 |
78 80
|
sseldd |
⊢ ( 𝜑 → 0 ∈ ( 𝑆 ⊕ 𝑈 ) ) |
| 82 |
76 81
|
elind |
⊢ ( 𝜑 → 0 ∈ ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) ) |
| 83 |
82
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) ) |
| 84 |
74 83
|
eqssd |
⊢ ( 𝜑 → ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ) |