| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p |  |-  .(+) = ( LSSum ` G ) | 
						
							| 2 |  | lsmcntz.s |  |-  ( ph -> S e. ( SubGrp ` G ) ) | 
						
							| 3 |  | lsmcntz.t |  |-  ( ph -> T e. ( SubGrp ` G ) ) | 
						
							| 4 |  | lsmcntz.u |  |-  ( ph -> U e. ( SubGrp ` G ) ) | 
						
							| 5 |  | lsmdisj.o |  |-  .0. = ( 0g ` G ) | 
						
							| 6 |  | lsmdisjr.i |  |-  ( ph -> ( S i^i ( T .(+) U ) ) = { .0. } ) | 
						
							| 7 |  | lsmdisj2r.i |  |-  ( ph -> ( T i^i U ) = { .0. } ) | 
						
							| 8 |  | eqid |  |-  ( oppG ` G ) = ( oppG ` G ) | 
						
							| 9 | 8 1 | oppglsm |  |-  ( U ( LSSum ` ( oppG ` G ) ) S ) = ( S .(+) U ) | 
						
							| 10 | 9 | ineq2i |  |-  ( T i^i ( U ( LSSum ` ( oppG ` G ) ) S ) ) = ( T i^i ( S .(+) U ) ) | 
						
							| 11 |  | incom |  |-  ( T i^i ( S .(+) U ) ) = ( ( S .(+) U ) i^i T ) | 
						
							| 12 | 10 11 | eqtri |  |-  ( T i^i ( U ( LSSum ` ( oppG ` G ) ) S ) ) = ( ( S .(+) U ) i^i T ) | 
						
							| 13 |  | eqid |  |-  ( LSSum ` ( oppG ` G ) ) = ( LSSum ` ( oppG ` G ) ) | 
						
							| 14 | 8 | oppgsubg |  |-  ( SubGrp ` G ) = ( SubGrp ` ( oppG ` G ) ) | 
						
							| 15 | 4 14 | eleqtrdi |  |-  ( ph -> U e. ( SubGrp ` ( oppG ` G ) ) ) | 
						
							| 16 | 3 14 | eleqtrdi |  |-  ( ph -> T e. ( SubGrp ` ( oppG ` G ) ) ) | 
						
							| 17 | 2 14 | eleqtrdi |  |-  ( ph -> S e. ( SubGrp ` ( oppG ` G ) ) ) | 
						
							| 18 | 8 5 | oppgid |  |-  .0. = ( 0g ` ( oppG ` G ) ) | 
						
							| 19 | 8 1 | oppglsm |  |-  ( U ( LSSum ` ( oppG ` G ) ) T ) = ( T .(+) U ) | 
						
							| 20 | 19 | ineq1i |  |-  ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) = ( ( T .(+) U ) i^i S ) | 
						
							| 21 |  | incom |  |-  ( ( T .(+) U ) i^i S ) = ( S i^i ( T .(+) U ) ) | 
						
							| 22 | 20 21 | eqtri |  |-  ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) = ( S i^i ( T .(+) U ) ) | 
						
							| 23 | 22 6 | eqtrid |  |-  ( ph -> ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) = { .0. } ) | 
						
							| 24 |  | incom |  |-  ( T i^i U ) = ( U i^i T ) | 
						
							| 25 | 24 7 | eqtr3id |  |-  ( ph -> ( U i^i T ) = { .0. } ) | 
						
							| 26 | 13 15 16 17 18 23 25 | lsmdisj2 |  |-  ( ph -> ( T i^i ( U ( LSSum ` ( oppG ` G ) ) S ) ) = { .0. } ) | 
						
							| 27 | 12 26 | eqtr3id |  |-  ( ph -> ( ( S .(+) U ) i^i T ) = { .0. } ) |