Step |
Hyp |
Ref |
Expression |
1 |
|
lspsnel4.v |
|- V = ( Base ` W ) |
2 |
|
lspsnel4.o |
|- .0. = ( 0g ` W ) |
3 |
|
lspsnel4.s |
|- S = ( LSubSp ` W ) |
4 |
|
lspsnel4.n |
|- N = ( LSpan ` W ) |
5 |
|
lspsnel4.w |
|- ( ph -> W e. LVec ) |
6 |
|
lspsnel4.u |
|- ( ph -> U e. S ) |
7 |
|
lspsnel4.x |
|- ( ph -> X e. V ) |
8 |
|
lspsnel4.y |
|- ( ph -> Y e. ( N ` { X } ) ) |
9 |
|
lspsnel4.z |
|- ( ph -> Y =/= .0. ) |
10 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
11 |
5 10
|
syl |
|- ( ph -> W e. LMod ) |
12 |
11
|
adantr |
|- ( ( ph /\ X e. U ) -> W e. LMod ) |
13 |
6
|
adantr |
|- ( ( ph /\ X e. U ) -> U e. S ) |
14 |
|
simpr |
|- ( ( ph /\ X e. U ) -> X e. U ) |
15 |
8
|
adantr |
|- ( ( ph /\ X e. U ) -> Y e. ( N ` { X } ) ) |
16 |
3 4 12 13 14 15
|
lspsnel3 |
|- ( ( ph /\ X e. U ) -> Y e. U ) |
17 |
11
|
adantr |
|- ( ( ph /\ Y e. U ) -> W e. LMod ) |
18 |
6
|
adantr |
|- ( ( ph /\ Y e. U ) -> U e. S ) |
19 |
|
simpr |
|- ( ( ph /\ Y e. U ) -> Y e. U ) |
20 |
1 4
|
lspsnid |
|- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
21 |
11 7 20
|
syl2anc |
|- ( ph -> X e. ( N ` { X } ) ) |
22 |
1 2 4 5 7 8 9
|
lspsneleq |
|- ( ph -> ( N ` { Y } ) = ( N ` { X } ) ) |
23 |
21 22
|
eleqtrrd |
|- ( ph -> X e. ( N ` { Y } ) ) |
24 |
23
|
adantr |
|- ( ( ph /\ Y e. U ) -> X e. ( N ` { Y } ) ) |
25 |
3 4 17 18 19 24
|
lspsnel3 |
|- ( ( ph /\ Y e. U ) -> X e. U ) |
26 |
16 25
|
impbida |
|- ( ph -> ( X e. U <-> Y e. U ) ) |