Description: Divsion by a number greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltdivgt1.1 | |- ( ph -> A e. RR+ ) |
|
| ltdivgt1.2 | |- ( ph -> B e. RR+ ) |
||
| Assertion | ltdivgt1 | |- ( ph -> ( 1 < B <-> ( A / B ) < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltdivgt1.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | ltdivgt1.2 | |- ( ph -> B e. RR+ ) |
|
| 3 | 1rp | |- 1 e. RR+ |
|
| 4 | 3 | a1i | |- ( ph -> 1 e. RR+ ) |
| 5 | 4 2 1 | ltdiv2d | |- ( ph -> ( 1 < B <-> ( A / B ) < ( A / 1 ) ) ) |
| 6 | 1 | rpcnd | |- ( ph -> A e. CC ) |
| 7 | 6 | div1d | |- ( ph -> ( A / 1 ) = A ) |
| 8 | 7 | breq2d | |- ( ph -> ( ( A / B ) < ( A / 1 ) <-> ( A / B ) < A ) ) |
| 9 | 5 8 | bitrd | |- ( ph -> ( 1 < B <-> ( A / B ) < A ) ) |