Step |
Hyp |
Ref |
Expression |
1 |
|
lvolnleat.l |
|- .<_ = ( le ` K ) |
2 |
|
lvolnleat.a |
|- A = ( Atoms ` K ) |
3 |
|
lvolnleat.v |
|- V = ( LVols ` K ) |
4 |
|
3simpa |
|- ( ( K e. HL /\ X e. V /\ P e. A ) -> ( K e. HL /\ X e. V ) ) |
5 |
|
simp3 |
|- ( ( K e. HL /\ X e. V /\ P e. A ) -> P e. A ) |
6 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
7 |
1 6 2 3
|
lvolnle3at |
|- ( ( ( K e. HL /\ X e. V ) /\ ( P e. A /\ P e. A /\ P e. A ) ) -> -. X .<_ ( ( P ( join ` K ) P ) ( join ` K ) P ) ) |
8 |
4 5 5 5 7
|
syl13anc |
|- ( ( K e. HL /\ X e. V /\ P e. A ) -> -. X .<_ ( ( P ( join ` K ) P ) ( join ` K ) P ) ) |
9 |
6 2
|
hlatjidm |
|- ( ( K e. HL /\ P e. A ) -> ( P ( join ` K ) P ) = P ) |
10 |
9
|
3adant2 |
|- ( ( K e. HL /\ X e. V /\ P e. A ) -> ( P ( join ` K ) P ) = P ) |
11 |
10
|
oveq1d |
|- ( ( K e. HL /\ X e. V /\ P e. A ) -> ( ( P ( join ` K ) P ) ( join ` K ) P ) = ( P ( join ` K ) P ) ) |
12 |
11 10
|
eqtrd |
|- ( ( K e. HL /\ X e. V /\ P e. A ) -> ( ( P ( join ` K ) P ) ( join ` K ) P ) = P ) |
13 |
12
|
breq2d |
|- ( ( K e. HL /\ X e. V /\ P e. A ) -> ( X .<_ ( ( P ( join ` K ) P ) ( join ` K ) P ) <-> X .<_ P ) ) |
14 |
8 13
|
mtbid |
|- ( ( K e. HL /\ X e. V /\ P e. A ) -> -. X .<_ P ) |