Metamath Proof Explorer


Theorem lvolnleat

Description: An atom cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012)

Ref Expression
Hypotheses lvolnleat.l ˙ = K
lvolnleat.a A = Atoms K
lvolnleat.v V = LVols K
Assertion lvolnleat K HL X V P A ¬ X ˙ P

Proof

Step Hyp Ref Expression
1 lvolnleat.l ˙ = K
2 lvolnleat.a A = Atoms K
3 lvolnleat.v V = LVols K
4 3simpa K HL X V P A K HL X V
5 simp3 K HL X V P A P A
6 eqid join K = join K
7 1 6 2 3 lvolnle3at K HL X V P A P A P A ¬ X ˙ P join K P join K P
8 4 5 5 5 7 syl13anc K HL X V P A ¬ X ˙ P join K P join K P
9 6 2 hlatjidm K HL P A P join K P = P
10 9 3adant2 K HL X V P A P join K P = P
11 10 oveq1d K HL X V P A P join K P join K P = P join K P
12 11 10 eqtrd K HL X V P A P join K P join K P = P
13 12 breq2d K HL X V P A X ˙ P join K P join K P X ˙ P
14 8 13 mtbid K HL X V P A ¬ X ˙ P