Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
lvolnleat
Next ⟩
lvolnlelln
Metamath Proof Explorer
Ascii
Unicode
Theorem
lvolnleat
Description:
An atom cannot majorize a lattice volume.
(Contributed by
NM
, 14-Jul-2012)
Ref
Expression
Hypotheses
lvolnleat.l
⊢
≤
˙
=
≤
K
lvolnleat.a
⊢
A
=
Atoms
⁡
K
lvolnleat.v
⊢
V
=
LVols
⁡
K
Assertion
lvolnleat
⊢
K
∈
HL
∧
X
∈
V
∧
P
∈
A
→
¬
X
≤
˙
P
Proof
Step
Hyp
Ref
Expression
1
lvolnleat.l
⊢
≤
˙
=
≤
K
2
lvolnleat.a
⊢
A
=
Atoms
⁡
K
3
lvolnleat.v
⊢
V
=
LVols
⁡
K
4
3simpa
⊢
K
∈
HL
∧
X
∈
V
∧
P
∈
A
→
K
∈
HL
∧
X
∈
V
5
simp3
⊢
K
∈
HL
∧
X
∈
V
∧
P
∈
A
→
P
∈
A
6
eqid
⊢
join
⁡
K
=
join
⁡
K
7
1
6
2
3
lvolnle3at
⊢
K
∈
HL
∧
X
∈
V
∧
P
∈
A
∧
P
∈
A
∧
P
∈
A
→
¬
X
≤
˙
P
join
⁡
K
P
join
⁡
K
P
8
4
5
5
5
7
syl13anc
⊢
K
∈
HL
∧
X
∈
V
∧
P
∈
A
→
¬
X
≤
˙
P
join
⁡
K
P
join
⁡
K
P
9
6
2
hlatjidm
⊢
K
∈
HL
∧
P
∈
A
→
P
join
⁡
K
P
=
P
10
9
3adant2
⊢
K
∈
HL
∧
X
∈
V
∧
P
∈
A
→
P
join
⁡
K
P
=
P
11
10
oveq1d
⊢
K
∈
HL
∧
X
∈
V
∧
P
∈
A
→
P
join
⁡
K
P
join
⁡
K
P
=
P
join
⁡
K
P
12
11
10
eqtrd
⊢
K
∈
HL
∧
X
∈
V
∧
P
∈
A
→
P
join
⁡
K
P
join
⁡
K
P
=
P
13
12
breq2d
⊢
K
∈
HL
∧
X
∈
V
∧
P
∈
A
→
X
≤
˙
P
join
⁡
K
P
join
⁡
K
P
↔
X
≤
˙
P
14
8
13
mtbid
⊢
K
∈
HL
∧
X
∈
V
∧
P
∈
A
→
¬
X
≤
˙
P