Metamath Proof Explorer


Theorem lvolnlelln

Description: A lattice line cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012)

Ref Expression
Hypotheses lvolnlelln.l ˙=K
lvolnlelln.n N=LLinesK
lvolnlelln.v V=LVolsK
Assertion lvolnlelln KHLXVYN¬X˙Y

Proof

Step Hyp Ref Expression
1 lvolnlelln.l ˙=K
2 lvolnlelln.n N=LLinesK
3 lvolnlelln.v V=LVolsK
4 simp3 KHLXVYNYN
5 eqid BaseK=BaseK
6 eqid joinK=joinK
7 eqid AtomsK=AtomsK
8 5 6 7 2 islln2 KHLYNYBaseKpAtomsKqAtomsKpqY=pjoinKq
9 8 3ad2ant1 KHLXVYNYNYBaseKpAtomsKqAtomsKpqY=pjoinKq
10 4 9 mpbid KHLXVYNYBaseKpAtomsKqAtomsKpqY=pjoinKq
11 simp11 KHLXVYNpAtomsKqAtomsKpqY=pjoinKqKHL
12 simp12 KHLXVYNpAtomsKqAtomsKpqY=pjoinKqXV
13 simp2l KHLXVYNpAtomsKqAtomsKpqY=pjoinKqpAtomsK
14 simp2r KHLXVYNpAtomsKqAtomsKpqY=pjoinKqqAtomsK
15 1 6 7 3 lvolnle3at KHLXVpAtomsKpAtomsKqAtomsK¬X˙pjoinKpjoinKq
16 11 12 13 13 14 15 syl23anc KHLXVYNpAtomsKqAtomsKpqY=pjoinKq¬X˙pjoinKpjoinKq
17 simp3r KHLXVYNpAtomsKqAtomsKpqY=pjoinKqY=pjoinKq
18 6 7 hlatjidm KHLpAtomsKpjoinKp=p
19 11 13 18 syl2anc KHLXVYNpAtomsKqAtomsKpqY=pjoinKqpjoinKp=p
20 19 oveq1d KHLXVYNpAtomsKqAtomsKpqY=pjoinKqpjoinKpjoinKq=pjoinKq
21 17 20 eqtr4d KHLXVYNpAtomsKqAtomsKpqY=pjoinKqY=pjoinKpjoinKq
22 21 breq2d KHLXVYNpAtomsKqAtomsKpqY=pjoinKqX˙YX˙pjoinKpjoinKq
23 16 22 mtbird KHLXVYNpAtomsKqAtomsKpqY=pjoinKq¬X˙Y
24 23 3exp KHLXVYNpAtomsKqAtomsKpqY=pjoinKq¬X˙Y
25 24 rexlimdvv KHLXVYNpAtomsKqAtomsKpqY=pjoinKq¬X˙Y
26 25 adantld KHLXVYNYBaseKpAtomsKqAtomsKpqY=pjoinKq¬X˙Y
27 10 26 mpd KHLXVYN¬X˙Y