| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madufval.a |
|- A = ( N Mat R ) |
| 2 |
|
madufval.d |
|- D = ( N maDet R ) |
| 3 |
|
madufval.j |
|- J = ( N maAdju R ) |
| 4 |
|
madufval.b |
|- B = ( Base ` A ) |
| 5 |
|
madufval.o |
|- .1. = ( 1r ` R ) |
| 6 |
|
madufval.z |
|- .0. = ( 0g ` R ) |
| 7 |
1 4
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
| 8 |
7
|
simpld |
|- ( M e. B -> N e. Fin ) |
| 9 |
|
mpoexga |
|- ( ( N e. Fin /\ N e. Fin ) -> ( i e. N , j e. N |-> ( D ` ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k M l ) ) ) ) ) e. _V ) |
| 10 |
8 8 9
|
syl2anc |
|- ( M e. B -> ( i e. N , j e. N |-> ( D ` ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k M l ) ) ) ) ) e. _V ) |
| 11 |
|
oveq |
|- ( m = M -> ( k m l ) = ( k M l ) ) |
| 12 |
11
|
ifeq2d |
|- ( m = M -> if ( k = j , if ( l = i , .1. , .0. ) , ( k m l ) ) = if ( k = j , if ( l = i , .1. , .0. ) , ( k M l ) ) ) |
| 13 |
12
|
mpoeq3dv |
|- ( m = M -> ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k m l ) ) ) = ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k M l ) ) ) ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( m = M /\ i e. N /\ j e. N ) -> ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k m l ) ) ) = ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k M l ) ) ) ) |
| 15 |
14
|
fveq2d |
|- ( ( m = M /\ i e. N /\ j e. N ) -> ( D ` ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k m l ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k M l ) ) ) ) ) |
| 16 |
15
|
mpoeq3dva |
|- ( m = M -> ( i e. N , j e. N |-> ( D ` ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k m l ) ) ) ) ) = ( i e. N , j e. N |-> ( D ` ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k M l ) ) ) ) ) ) |
| 17 |
1 2 3 4 5 6
|
madufval |
|- J = ( m e. B |-> ( i e. N , j e. N |-> ( D ` ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k m l ) ) ) ) ) ) |
| 18 |
16 17
|
fvmptg |
|- ( ( M e. B /\ ( i e. N , j e. N |-> ( D ` ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k M l ) ) ) ) ) e. _V ) -> ( J ` M ) = ( i e. N , j e. N |-> ( D ` ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k M l ) ) ) ) ) ) |
| 19 |
10 18
|
mpdan |
|- ( M e. B -> ( J ` M ) = ( i e. N , j e. N |-> ( D ` ( k e. N , l e. N |-> if ( k = j , if ( l = i , .1. , .0. ) , ( k M l ) ) ) ) ) ) |