| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df2o3 |
|- 2o = { (/) , 1o } |
| 2 |
|
df-pr |
|- { (/) , 1o } = ( { (/) } u. { 1o } ) |
| 3 |
1 2
|
eqtri |
|- 2o = ( { (/) } u. { 1o } ) |
| 4 |
3
|
oveq2i |
|- ( A ^m 2o ) = ( A ^m ( { (/) } u. { 1o } ) ) |
| 5 |
|
snex |
|- { (/) } e. _V |
| 6 |
5
|
a1i |
|- ( A e. V -> { (/) } e. _V ) |
| 7 |
|
snex |
|- { 1o } e. _V |
| 8 |
7
|
a1i |
|- ( A e. V -> { 1o } e. _V ) |
| 9 |
|
id |
|- ( A e. V -> A e. V ) |
| 10 |
|
1n0 |
|- 1o =/= (/) |
| 11 |
10
|
neii |
|- -. 1o = (/) |
| 12 |
|
elsni |
|- ( 1o e. { (/) } -> 1o = (/) ) |
| 13 |
11 12
|
mto |
|- -. 1o e. { (/) } |
| 14 |
|
disjsn |
|- ( ( { (/) } i^i { 1o } ) = (/) <-> -. 1o e. { (/) } ) |
| 15 |
13 14
|
mpbir |
|- ( { (/) } i^i { 1o } ) = (/) |
| 16 |
15
|
a1i |
|- ( A e. V -> ( { (/) } i^i { 1o } ) = (/) ) |
| 17 |
|
mapunen |
|- ( ( ( { (/) } e. _V /\ { 1o } e. _V /\ A e. V ) /\ ( { (/) } i^i { 1o } ) = (/) ) -> ( A ^m ( { (/) } u. { 1o } ) ) ~~ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ) |
| 18 |
6 8 9 16 17
|
syl31anc |
|- ( A e. V -> ( A ^m ( { (/) } u. { 1o } ) ) ~~ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ) |
| 19 |
4 18
|
eqbrtrid |
|- ( A e. V -> ( A ^m 2o ) ~~ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ) |
| 20 |
|
0ex |
|- (/) e. _V |
| 21 |
20
|
a1i |
|- ( A e. V -> (/) e. _V ) |
| 22 |
9 21
|
mapsnend |
|- ( A e. V -> ( A ^m { (/) } ) ~~ A ) |
| 23 |
|
1oex |
|- 1o e. _V |
| 24 |
23
|
a1i |
|- ( A e. V -> 1o e. _V ) |
| 25 |
9 24
|
mapsnend |
|- ( A e. V -> ( A ^m { 1o } ) ~~ A ) |
| 26 |
|
xpen |
|- ( ( ( A ^m { (/) } ) ~~ A /\ ( A ^m { 1o } ) ~~ A ) -> ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ~~ ( A X. A ) ) |
| 27 |
22 25 26
|
syl2anc |
|- ( A e. V -> ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ~~ ( A X. A ) ) |
| 28 |
|
entr |
|- ( ( ( A ^m 2o ) ~~ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) /\ ( ( A ^m { (/) } ) X. ( A ^m { 1o } ) ) ~~ ( A X. A ) ) -> ( A ^m 2o ) ~~ ( A X. A ) ) |
| 29 |
19 27 28
|
syl2anc |
|- ( A e. V -> ( A ^m 2o ) ~~ ( A X. A ) ) |