Metamath Proof Explorer


Theorem map2xp

Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015) (Proof shortened by AV, 17-Jul-2022)

Ref Expression
Assertion map2xp AVA2𝑜A×A

Proof

Step Hyp Ref Expression
1 df2o3 2𝑜=1𝑜
2 df-pr 1𝑜=1𝑜
3 1 2 eqtri 2𝑜=1𝑜
4 3 oveq2i A2𝑜=A1𝑜
5 snex V
6 5 a1i AVV
7 snex 1𝑜V
8 7 a1i AV1𝑜V
9 id AVAV
10 1n0 1𝑜
11 10 neii ¬1𝑜=
12 elsni 1𝑜1𝑜=
13 11 12 mto ¬1𝑜
14 disjsn 1𝑜=¬1𝑜
15 13 14 mpbir 1𝑜=
16 15 a1i AV1𝑜=
17 mapunen V1𝑜VAV1𝑜=A1𝑜A×A1𝑜
18 6 8 9 16 17 syl31anc AVA1𝑜A×A1𝑜
19 4 18 eqbrtrid AVA2𝑜A×A1𝑜
20 0ex V
21 20 a1i AVV
22 9 21 mapsnend AVAA
23 1oex 1𝑜V
24 23 a1i AV1𝑜V
25 9 24 mapsnend AVA1𝑜A
26 xpen AAA1𝑜AA×A1𝑜A×A
27 22 25 26 syl2anc AVA×A1𝑜A×A
28 entr A2𝑜A×A1𝑜A×A1𝑜A×AA2𝑜A×A
29 19 27 28 syl2anc AVA2𝑜A×A