| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpglem.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdpglem.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdpglem.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | mapdpglem.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | mapdpglem.s |  |-  .- = ( -g ` U ) | 
						
							| 6 |  | mapdpglem.n |  |-  N = ( LSpan ` U ) | 
						
							| 7 |  | mapdpglem.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | mapdpglem.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | mapdpglem.x |  |-  ( ph -> X e. V ) | 
						
							| 10 |  | mapdpglem.y |  |-  ( ph -> Y e. V ) | 
						
							| 11 |  | mapdpglem1.p |  |-  .(+) = ( LSSum ` C ) | 
						
							| 12 |  | mapdpglem2.j |  |-  J = ( LSpan ` C ) | 
						
							| 13 |  | mapdpglem3.f |  |-  F = ( Base ` C ) | 
						
							| 14 |  | mapdpglem3.te |  |-  ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) | 
						
							| 15 |  | mapdpglem3.a |  |-  A = ( Scalar ` U ) | 
						
							| 16 |  | mapdpglem3.b |  |-  B = ( Base ` A ) | 
						
							| 17 |  | mapdpglem3.t |  |-  .x. = ( .s ` C ) | 
						
							| 18 |  | mapdpglem3.r |  |-  R = ( -g ` C ) | 
						
							| 19 |  | mapdpglem3.g |  |-  ( ph -> G e. F ) | 
						
							| 20 |  | mapdpglem3.e |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) | 
						
							| 21 |  | mapdpglem4.q |  |-  Q = ( 0g ` U ) | 
						
							| 22 |  | mapdpglem.ne |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 23 |  | mapdpglem4.jt |  |-  ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) ) | 
						
							| 24 |  | mapdpglem4.z |  |-  .0. = ( 0g ` A ) | 
						
							| 25 |  | mapdpglem4.g4 |  |-  ( ph -> g e. B ) | 
						
							| 26 |  | mapdpglem4.z4 |  |-  ( ph -> z e. ( M ` ( N ` { Y } ) ) ) | 
						
							| 27 |  | mapdpglem4.t4 |  |-  ( ph -> t = ( ( g .x. G ) R z ) ) | 
						
							| 28 |  | mapdpglem4.xn |  |-  ( ph -> X =/= Q ) | 
						
							| 29 |  | mapdpglem12.yn |  |-  ( ph -> Y =/= Q ) | 
						
							| 30 | 8 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 31 | 9 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> X e. V ) | 
						
							| 32 | 10 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> Y e. V ) | 
						
							| 33 | 14 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) | 
						
							| 34 | 19 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> G e. F ) | 
						
							| 35 | 20 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) | 
						
							| 36 | 22 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 37 | 23 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) ) | 
						
							| 38 | 25 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> g e. B ) | 
						
							| 39 | 26 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> z e. ( M ` ( N ` { Y } ) ) ) | 
						
							| 40 | 27 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> t = ( ( g .x. G ) R z ) ) | 
						
							| 41 | 28 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> X =/= Q ) | 
						
							| 42 | 29 | adantr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> Y =/= Q ) | 
						
							| 43 |  | simpr |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> z = ( 0g ` C ) ) | 
						
							| 44 | 1 2 3 4 5 6 7 30 31 32 11 12 13 33 15 16 17 18 34 35 21 36 37 24 38 39 40 41 42 43 | mapdpglem15 |  |-  ( ( ph /\ z = ( 0g ` C ) ) -> ( N ` { X } ) = ( N ` { Y } ) ) | 
						
							| 45 | 44 | ex |  |-  ( ph -> ( z = ( 0g ` C ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) | 
						
							| 46 | 45 | necon3d |  |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> z =/= ( 0g ` C ) ) ) | 
						
							| 47 | 22 46 | mpd |  |-  ( ph -> z =/= ( 0g ` C ) ) |