Metamath Proof Explorer


Theorem mapdpglem16

Description: Lemma for mapdpg . Baer p. 45, line 7: "Likewise we see that z =/= 0." (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdpglem.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdpglem.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdpglem.v 𝑉 = ( Base ‘ 𝑈 )
mapdpglem.s = ( -g𝑈 )
mapdpglem.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdpglem.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdpglem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdpglem.x ( 𝜑𝑋𝑉 )
mapdpglem.y ( 𝜑𝑌𝑉 )
mapdpglem1.p = ( LSSum ‘ 𝐶 )
mapdpglem2.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdpglem3.f 𝐹 = ( Base ‘ 𝐶 )
mapdpglem3.te ( 𝜑𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) )
mapdpglem3.a 𝐴 = ( Scalar ‘ 𝑈 )
mapdpglem3.b 𝐵 = ( Base ‘ 𝐴 )
mapdpglem3.t · = ( ·𝑠𝐶 )
mapdpglem3.r 𝑅 = ( -g𝐶 )
mapdpglem3.g ( 𝜑𝐺𝐹 )
mapdpglem3.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
mapdpglem4.q 𝑄 = ( 0g𝑈 )
mapdpglem.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
mapdpglem4.jt ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) )
mapdpglem4.z 0 = ( 0g𝐴 )
mapdpglem4.g4 ( 𝜑𝑔𝐵 )
mapdpglem4.z4 ( 𝜑𝑧 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )
mapdpglem4.t4 ( 𝜑𝑡 = ( ( 𝑔 · 𝐺 ) 𝑅 𝑧 ) )
mapdpglem4.xn ( 𝜑𝑋𝑄 )
mapdpglem12.yn ( 𝜑𝑌𝑄 )
Assertion mapdpglem16 ( 𝜑𝑧 ≠ ( 0g𝐶 ) )

Proof

Step Hyp Ref Expression
1 mapdpglem.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdpglem.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdpglem.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdpglem.v 𝑉 = ( Base ‘ 𝑈 )
5 mapdpglem.s = ( -g𝑈 )
6 mapdpglem.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdpglem.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 mapdpglem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 mapdpglem.x ( 𝜑𝑋𝑉 )
10 mapdpglem.y ( 𝜑𝑌𝑉 )
11 mapdpglem1.p = ( LSSum ‘ 𝐶 )
12 mapdpglem2.j 𝐽 = ( LSpan ‘ 𝐶 )
13 mapdpglem3.f 𝐹 = ( Base ‘ 𝐶 )
14 mapdpglem3.te ( 𝜑𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) )
15 mapdpglem3.a 𝐴 = ( Scalar ‘ 𝑈 )
16 mapdpglem3.b 𝐵 = ( Base ‘ 𝐴 )
17 mapdpglem3.t · = ( ·𝑠𝐶 )
18 mapdpglem3.r 𝑅 = ( -g𝐶 )
19 mapdpglem3.g ( 𝜑𝐺𝐹 )
20 mapdpglem3.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
21 mapdpglem4.q 𝑄 = ( 0g𝑈 )
22 mapdpglem.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
23 mapdpglem4.jt ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) )
24 mapdpglem4.z 0 = ( 0g𝐴 )
25 mapdpglem4.g4 ( 𝜑𝑔𝐵 )
26 mapdpglem4.z4 ( 𝜑𝑧 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )
27 mapdpglem4.t4 ( 𝜑𝑡 = ( ( 𝑔 · 𝐺 ) 𝑅 𝑧 ) )
28 mapdpglem4.xn ( 𝜑𝑋𝑄 )
29 mapdpglem12.yn ( 𝜑𝑌𝑄 )
30 8 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
31 9 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → 𝑋𝑉 )
32 10 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → 𝑌𝑉 )
33 14 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → 𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) )
34 19 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → 𝐺𝐹 )
35 20 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
36 22 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
37 23 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) )
38 25 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → 𝑔𝐵 )
39 26 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → 𝑧 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )
40 27 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → 𝑡 = ( ( 𝑔 · 𝐺 ) 𝑅 𝑧 ) )
41 28 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → 𝑋𝑄 )
42 29 adantr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → 𝑌𝑄 )
43 simpr ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → 𝑧 = ( 0g𝐶 ) )
44 1 2 3 4 5 6 7 30 31 32 11 12 13 33 15 16 17 18 34 35 21 36 37 24 38 39 40 41 42 43 mapdpglem15 ( ( 𝜑𝑧 = ( 0g𝐶 ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) )
45 44 ex ( 𝜑 → ( 𝑧 = ( 0g𝐶 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) )
46 45 necon3d ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) → 𝑧 ≠ ( 0g𝐶 ) ) )
47 22 46 mpd ( 𝜑𝑧 ≠ ( 0g𝐶 ) )