Metamath Proof Explorer


Theorem mapdpglem16

Description: Lemma for mapdpg . Baer p. 45, line 7: "Likewise we see that z =/= 0." (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H = LHyp K
mapdpglem.m M = mapd K W
mapdpglem.u U = DVecH K W
mapdpglem.v V = Base U
mapdpglem.s - ˙ = - U
mapdpglem.n N = LSpan U
mapdpglem.c C = LCDual K W
mapdpglem.k φ K HL W H
mapdpglem.x φ X V
mapdpglem.y φ Y V
mapdpglem1.p ˙ = LSSum C
mapdpglem2.j J = LSpan C
mapdpglem3.f F = Base C
mapdpglem3.te φ t M N X ˙ M N Y
mapdpglem3.a A = Scalar U
mapdpglem3.b B = Base A
mapdpglem3.t · ˙ = C
mapdpglem3.r R = - C
mapdpglem3.g φ G F
mapdpglem3.e φ M N X = J G
mapdpglem4.q Q = 0 U
mapdpglem.ne φ N X N Y
mapdpglem4.jt φ M N X - ˙ Y = J t
mapdpglem4.z 0 ˙ = 0 A
mapdpglem4.g4 φ g B
mapdpglem4.z4 φ z M N Y
mapdpglem4.t4 φ t = g · ˙ G R z
mapdpglem4.xn φ X Q
mapdpglem12.yn φ Y Q
Assertion mapdpglem16 φ z 0 C

Proof

Step Hyp Ref Expression
1 mapdpglem.h H = LHyp K
2 mapdpglem.m M = mapd K W
3 mapdpglem.u U = DVecH K W
4 mapdpglem.v V = Base U
5 mapdpglem.s - ˙ = - U
6 mapdpglem.n N = LSpan U
7 mapdpglem.c C = LCDual K W
8 mapdpglem.k φ K HL W H
9 mapdpglem.x φ X V
10 mapdpglem.y φ Y V
11 mapdpglem1.p ˙ = LSSum C
12 mapdpglem2.j J = LSpan C
13 mapdpglem3.f F = Base C
14 mapdpglem3.te φ t M N X ˙ M N Y
15 mapdpglem3.a A = Scalar U
16 mapdpglem3.b B = Base A
17 mapdpglem3.t · ˙ = C
18 mapdpglem3.r R = - C
19 mapdpglem3.g φ G F
20 mapdpglem3.e φ M N X = J G
21 mapdpglem4.q Q = 0 U
22 mapdpglem.ne φ N X N Y
23 mapdpglem4.jt φ M N X - ˙ Y = J t
24 mapdpglem4.z 0 ˙ = 0 A
25 mapdpglem4.g4 φ g B
26 mapdpglem4.z4 φ z M N Y
27 mapdpglem4.t4 φ t = g · ˙ G R z
28 mapdpglem4.xn φ X Q
29 mapdpglem12.yn φ Y Q
30 8 adantr φ z = 0 C K HL W H
31 9 adantr φ z = 0 C X V
32 10 adantr φ z = 0 C Y V
33 14 adantr φ z = 0 C t M N X ˙ M N Y
34 19 adantr φ z = 0 C G F
35 20 adantr φ z = 0 C M N X = J G
36 22 adantr φ z = 0 C N X N Y
37 23 adantr φ z = 0 C M N X - ˙ Y = J t
38 25 adantr φ z = 0 C g B
39 26 adantr φ z = 0 C z M N Y
40 27 adantr φ z = 0 C t = g · ˙ G R z
41 28 adantr φ z = 0 C X Q
42 29 adantr φ z = 0 C Y Q
43 simpr φ z = 0 C z = 0 C
44 1 2 3 4 5 6 7 30 31 32 11 12 13 33 15 16 17 18 34 35 21 36 37 24 38 39 40 41 42 43 mapdpglem15 φ z = 0 C N X = N Y
45 44 ex φ z = 0 C N X = N Y
46 45 necon3d φ N X N Y z 0 C
47 22 46 mpd φ z 0 C