| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fssxp |
|- ( f : A --> B -> f C_ ( A X. B ) ) |
| 2 |
1
|
ss2abi |
|- { f | f : A --> B } C_ { f | f C_ ( A X. B ) } |
| 3 |
|
df-pw |
|- ~P ( A X. B ) = { f | f C_ ( A X. B ) } |
| 4 |
2 3
|
sseqtrri |
|- { f | f : A --> B } C_ ~P ( A X. B ) |
| 5 |
|
xpexg |
|- ( ( A e. C /\ B e. D ) -> ( A X. B ) e. _V ) |
| 6 |
5
|
pwexd |
|- ( ( A e. C /\ B e. D ) -> ~P ( A X. B ) e. _V ) |
| 7 |
|
ssexg |
|- ( ( { f | f : A --> B } C_ ~P ( A X. B ) /\ ~P ( A X. B ) e. _V ) -> { f | f : A --> B } e. _V ) |
| 8 |
4 6 7
|
sylancr |
|- ( ( A e. C /\ B e. D ) -> { f | f : A --> B } e. _V ) |