| Step |
Hyp |
Ref |
Expression |
| 1 |
|
marypha2lem.t |
|- T = U_ x e. A ( { x } X. ( F ` x ) ) |
| 2 |
1
|
marypha2lem2 |
|- T = { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |
| 3 |
2
|
imaeq1i |
|- ( T " X ) = ( { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } " X ) |
| 4 |
|
df-ima |
|- ( { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } " X ) = ran ( { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |` X ) |
| 5 |
3 4
|
eqtri |
|- ( T " X ) = ran ( { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |` X ) |
| 6 |
|
resopab2 |
|- ( X C_ A -> ( { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |` X ) = { <. x , y >. | ( x e. X /\ y e. ( F ` x ) ) } ) |
| 7 |
6
|
adantl |
|- ( ( F Fn A /\ X C_ A ) -> ( { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |` X ) = { <. x , y >. | ( x e. X /\ y e. ( F ` x ) ) } ) |
| 8 |
7
|
rneqd |
|- ( ( F Fn A /\ X C_ A ) -> ran ( { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |` X ) = ran { <. x , y >. | ( x e. X /\ y e. ( F ` x ) ) } ) |
| 9 |
|
rnopab |
|- ran { <. x , y >. | ( x e. X /\ y e. ( F ` x ) ) } = { y | E. x ( x e. X /\ y e. ( F ` x ) ) } |
| 10 |
|
df-rex |
|- ( E. x e. X y e. ( F ` x ) <-> E. x ( x e. X /\ y e. ( F ` x ) ) ) |
| 11 |
10
|
bicomi |
|- ( E. x ( x e. X /\ y e. ( F ` x ) ) <-> E. x e. X y e. ( F ` x ) ) |
| 12 |
11
|
abbii |
|- { y | E. x ( x e. X /\ y e. ( F ` x ) ) } = { y | E. x e. X y e. ( F ` x ) } |
| 13 |
|
df-iun |
|- U_ x e. X ( F ` x ) = { y | E. x e. X y e. ( F ` x ) } |
| 14 |
12 13
|
eqtr4i |
|- { y | E. x ( x e. X /\ y e. ( F ` x ) ) } = U_ x e. X ( F ` x ) |
| 15 |
14
|
a1i |
|- ( ( F Fn A /\ X C_ A ) -> { y | E. x ( x e. X /\ y e. ( F ` x ) ) } = U_ x e. X ( F ` x ) ) |
| 16 |
9 15
|
eqtrid |
|- ( ( F Fn A /\ X C_ A ) -> ran { <. x , y >. | ( x e. X /\ y e. ( F ` x ) ) } = U_ x e. X ( F ` x ) ) |
| 17 |
8 16
|
eqtrd |
|- ( ( F Fn A /\ X C_ A ) -> ran ( { <. x , y >. | ( x e. A /\ y e. ( F ` x ) ) } |` X ) = U_ x e. X ( F ` x ) ) |
| 18 |
5 17
|
eqtrid |
|- ( ( F Fn A /\ X C_ A ) -> ( T " X ) = U_ x e. X ( F ` x ) ) |
| 19 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
| 20 |
19
|
adantr |
|- ( ( F Fn A /\ X C_ A ) -> Fun F ) |
| 21 |
|
funiunfv |
|- ( Fun F -> U_ x e. X ( F ` x ) = U. ( F " X ) ) |
| 22 |
20 21
|
syl |
|- ( ( F Fn A /\ X C_ A ) -> U_ x e. X ( F ` x ) = U. ( F " X ) ) |
| 23 |
18 22
|
eqtrd |
|- ( ( F Fn A /\ X C_ A ) -> ( T " X ) = U. ( F " X ) ) |