| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1rhmval.k |  |-  K = ( Base ` R ) | 
						
							| 2 |  | mat1rhmval.a |  |-  A = ( { E } Mat R ) | 
						
							| 3 |  | mat1rhmval.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | mat1rhmval.o |  |-  O = <. E , E >. | 
						
							| 5 |  | mat1rhmval.f |  |-  F = ( x e. K |-> { <. O , x >. } ) | 
						
							| 6 |  | simpl |  |-  ( ( R e. Ring /\ E e. V ) -> R e. Ring ) | 
						
							| 7 |  | snfi |  |-  { E } e. Fin | 
						
							| 8 | 2 | matring |  |-  ( ( { E } e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 9 | 7 6 8 | sylancr |  |-  ( ( R e. Ring /\ E e. V ) -> A e. Ring ) | 
						
							| 10 | 1 2 3 4 5 | mat1ghm |  |-  ( ( R e. Ring /\ E e. V ) -> F e. ( R GrpHom A ) ) | 
						
							| 11 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 12 |  | eqid |  |-  ( mulGrp ` A ) = ( mulGrp ` A ) | 
						
							| 13 | 1 2 3 4 5 11 12 | mat1mhm |  |-  ( ( R e. Ring /\ E e. V ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` A ) ) ) | 
						
							| 14 | 10 13 | jca |  |-  ( ( R e. Ring /\ E e. V ) -> ( F e. ( R GrpHom A ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` A ) ) ) ) | 
						
							| 15 | 11 12 | isrhm |  |-  ( F e. ( R RingHom A ) <-> ( ( R e. Ring /\ A e. Ring ) /\ ( F e. ( R GrpHom A ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` A ) ) ) ) ) | 
						
							| 16 | 6 9 14 15 | syl21anbrc |  |-  ( ( R e. Ring /\ E e. V ) -> F e. ( R RingHom A ) ) |