| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1rhmval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | mat1rhmval.a | ⊢ 𝐴  =  ( { 𝐸 }  Mat  𝑅 ) | 
						
							| 3 |  | mat1rhmval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | mat1rhmval.o | ⊢ 𝑂  =  〈 𝐸 ,  𝐸 〉 | 
						
							| 5 |  | mat1rhmval.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  { 〈 𝑂 ,  𝑥 〉 } ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | snfi | ⊢ { 𝐸 }  ∈  Fin | 
						
							| 8 | 2 | matring | ⊢ ( ( { 𝐸 }  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 9 | 7 6 8 | sylancr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐴  ∈  Ring ) | 
						
							| 10 | 1 2 3 4 5 | mat1ghm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝐴 ) ) | 
						
							| 11 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 12 |  | eqid | ⊢ ( mulGrp ‘ 𝐴 )  =  ( mulGrp ‘ 𝐴 ) | 
						
							| 13 | 1 2 3 4 5 11 12 | mat1mhm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝐴 ) ) ) | 
						
							| 14 | 10 13 | jca | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝐹  ∈  ( 𝑅  GrpHom  𝐴 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝐴 ) ) ) ) | 
						
							| 15 | 11 12 | isrhm | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝐴 )  ↔  ( ( 𝑅  ∈  Ring  ∧  𝐴  ∈  Ring )  ∧  ( 𝐹  ∈  ( 𝑅  GrpHom  𝐴 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝐴 ) ) ) ) ) | 
						
							| 16 | 6 9 14 15 | syl21anbrc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐹  ∈  ( 𝑅  RingHom  𝐴 ) ) |