| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat1rhmval.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | mat1rhmval.a | ⊢ 𝐴  =  ( { 𝐸 }  Mat  𝑅 ) | 
						
							| 3 |  | mat1rhmval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | mat1rhmval.o | ⊢ 𝑂  =  〈 𝐸 ,  𝐸 〉 | 
						
							| 5 |  | mat1rhmval.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐾  ↦  { 〈 𝑂 ,  𝑥 〉 } ) | 
						
							| 6 |  | mat1mhm.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 7 |  | mat1mhm.n | ⊢ 𝑁  =  ( mulGrp ‘ 𝐴 ) | 
						
							| 8 | 6 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  𝑀  ∈  Mnd ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝑀  ∈  Mnd ) | 
						
							| 10 |  | snfi | ⊢ { 𝐸 }  ∈  Fin | 
						
							| 11 |  | simpl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝑅  ∈  Ring ) | 
						
							| 12 | 2 | matring | ⊢ ( ( { 𝐸 }  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 13 | 10 11 12 | sylancr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐴  ∈  Ring ) | 
						
							| 14 | 7 | ringmgp | ⊢ ( 𝐴  ∈  Ring  →  𝑁  ∈  Mnd ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝑁  ∈  Mnd ) | 
						
							| 16 | 1 2 3 4 5 | mat1f | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐹 : 𝐾 ⟶ 𝐵 ) | 
						
							| 17 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝑅  ∈  Mnd ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  𝑅  ∈  Mnd ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐸  ∈  𝑉 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  𝐸  ∈  𝑉 ) | 
						
							| 22 |  | simpll | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  𝑅  ∈  Ring ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 24 |  | snidg | ⊢ ( 𝐸  ∈  𝑉  →  𝐸  ∈  { 𝐸 } ) | 
						
							| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  𝐸  ∈  { 𝐸 } ) | 
						
							| 26 |  | simprl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  𝑤  ∈  𝐾 ) | 
						
							| 27 | 1 2 23 4 5 | mat1rhmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉  ∧  𝑤  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 28 | 22 21 26 27 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 29 | 2 1 23 25 25 28 | matecld | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 )  ∈  𝐾 ) | 
						
							| 30 |  | simprr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  𝑦  ∈  𝐾 ) | 
						
							| 31 | 1 2 23 4 5 | mat1rhmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉  ∧  𝑦  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 32 | 22 21 30 31 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 33 | 2 1 23 25 25 32 | matecld | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 )  ∈  𝐾 ) | 
						
							| 34 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 35 | 1 34 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 )  ∈  𝐾  ∧  ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 )  ∈  𝐾 )  →  ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) )  ∈  𝐾 ) | 
						
							| 36 | 22 29 33 35 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) )  ∈  𝐾 ) | 
						
							| 37 |  | oveq2 | ⊢ ( 𝑒  =  𝐸  →  ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 )  =  ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ) | 
						
							| 38 |  | oveq1 | ⊢ ( 𝑒  =  𝐸  →  ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 )  =  ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) | 
						
							| 39 | 37 38 | oveq12d | ⊢ ( 𝑒  =  𝐸  →  ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) )  =  ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  ∧  𝑒  =  𝐸 )  →  ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) )  =  ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) | 
						
							| 41 | 1 19 21 36 40 | gsumsnd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝑅  Σg  ( 𝑒  ∈  { 𝐸 }  ↦  ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) )  =  ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) | 
						
							| 42 | 1 2 3 4 5 | mat1rhmelval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉  ∧  𝑤  ∈  𝐾 )  →  ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 )  =  𝑤 ) | 
						
							| 43 | 22 21 26 42 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 )  =  𝑤 ) | 
						
							| 44 | 1 2 3 4 5 | mat1rhmelval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉  ∧  𝑦  ∈  𝐾 )  →  ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 )  =  𝑦 ) | 
						
							| 45 | 22 21 30 44 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 )  =  𝑦 ) | 
						
							| 46 | 43 45 | oveq12d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝐸 ) ( .r ‘ 𝑅 ) ( 𝐸 ( 𝐹 ‘ 𝑦 ) 𝐸 ) )  =  ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 47 | 41 46 | eqtrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝑅  Σg  ( 𝑒  ∈  { 𝐸 }  ↦  ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) )  =  ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 48 | 1 2 3 4 5 | mat1rhmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉  ∧  𝑤  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑤 )  ∈  𝐵 ) | 
						
							| 49 | 22 21 26 48 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐹 ‘ 𝑤 )  ∈  𝐵 ) | 
						
							| 50 | 1 2 3 4 5 | mat1rhmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉  ∧  𝑦  ∈  𝐾 )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 ) | 
						
							| 51 | 22 21 30 50 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 ) | 
						
							| 52 | 49 51 | jca | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( ( 𝐹 ‘ 𝑤 )  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 ) ) | 
						
							| 53 | 24 24 | jca | ⊢ ( 𝐸  ∈  𝑉  →  ( 𝐸  ∈  { 𝐸 }  ∧  𝐸  ∈  { 𝐸 } ) ) | 
						
							| 54 | 53 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐸  ∈  { 𝐸 }  ∧  𝐸  ∈  { 𝐸 } ) ) | 
						
							| 55 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 56 | 2 3 55 | matmulcell | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝐹 ‘ 𝑤 )  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 )  ∧  ( 𝐸  ∈  { 𝐸 }  ∧  𝐸  ∈  { 𝐸 } ) )  →  ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 )  =  ( 𝑅  Σg  ( 𝑒  ∈  { 𝐸 }  ↦  ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) ) ) | 
						
							| 57 | 22 52 54 56 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 )  =  ( 𝑅  Σg  ( 𝑒  ∈  { 𝐸 }  ↦  ( ( 𝐸 ( 𝐹 ‘ 𝑤 ) 𝑒 ) ( .r ‘ 𝑅 ) ( 𝑒 ( 𝐹 ‘ 𝑦 ) 𝐸 ) ) ) ) ) | 
						
							| 58 | 1 34 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 )  →  ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝐾 ) | 
						
							| 59 | 22 26 30 58 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝐾 ) | 
						
							| 60 | 1 2 3 4 5 | mat1rhmelval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉  ∧  ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝐾 )  →  ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 )  =  ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 61 | 22 21 59 60 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 )  =  ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 62 | 47 57 61 | 3eqtr4rd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 )  =  ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) | 
						
							| 63 |  | oveq1 | ⊢ ( 𝑖  =  𝐸  →  ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 )  =  ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 ) ) | 
						
							| 64 |  | oveq1 | ⊢ ( 𝑖  =  𝐸  →  ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 )  =  ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) | 
						
							| 65 | 63 64 | eqeq12d | ⊢ ( 𝑖  =  𝐸  →  ( ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 )  =  ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 )  ↔  ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 )  =  ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) | 
						
							| 66 |  | oveq2 | ⊢ ( 𝑗  =  𝐸  →  ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 )  =  ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 ) ) | 
						
							| 67 |  | oveq2 | ⊢ ( 𝑗  =  𝐸  →  ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 )  =  ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) | 
						
							| 68 | 66 67 | eqeq12d | ⊢ ( 𝑗  =  𝐸  →  ( ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 )  =  ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 )  ↔  ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 )  =  ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) | 
						
							| 69 | 65 68 | 2ralsng | ⊢ ( ( 𝐸  ∈  𝑉  ∧  𝐸  ∈  𝑉 )  →  ( ∀ 𝑖  ∈  { 𝐸 } ∀ 𝑗  ∈  { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 )  =  ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 )  ↔  ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 )  =  ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) | 
						
							| 70 | 20 69 | sylancom | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( ∀ 𝑖  ∈  { 𝐸 } ∀ 𝑗  ∈  { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 )  =  ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 )  ↔  ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 )  =  ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( ∀ 𝑖  ∈  { 𝐸 } ∀ 𝑗  ∈  { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 )  =  ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 )  ↔  ( 𝐸 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝐸 )  =  ( 𝐸 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝐸 ) ) ) | 
						
							| 72 | 62 71 | mpbird | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ∀ 𝑖  ∈  { 𝐸 } ∀ 𝑗  ∈  { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 )  =  ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) | 
						
							| 73 | 1 2 3 4 5 | mat1rhmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉  ∧  ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝐾 )  →  ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) )  ∈  𝐵 ) | 
						
							| 74 | 22 21 59 73 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) )  ∈  𝐵 ) | 
						
							| 75 | 13 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  𝐴  ∈  Ring ) | 
						
							| 76 | 3 55 | ringcl | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝐹 ‘ 𝑤 )  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) )  ∈  𝐵 ) | 
						
							| 77 | 75 49 51 76 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) )  ∈  𝐵 ) | 
						
							| 78 | 2 3 | eqmat | ⊢ ( ( ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) )  ∈  𝐵  ∧  ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) )  ∈  𝐵 )  →  ( ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) )  ↔  ∀ 𝑖  ∈  { 𝐸 } ∀ 𝑗  ∈  { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 )  =  ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) | 
						
							| 79 | 74 77 78 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) )  ↔  ∀ 𝑖  ∈  { 𝐸 } ∀ 𝑗  ∈  { 𝐸 } ( 𝑖 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) ) 𝑗 )  =  ( 𝑖 ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) 𝑗 ) ) ) | 
						
							| 80 | 72 79 | mpbird | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  ∧  ( 𝑤  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 81 | 80 | ralrimivva | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ∀ 𝑤  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 82 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 83 | 1 82 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  𝐾 ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 1r ‘ 𝑅 )  ∈  𝐾 ) | 
						
							| 85 | 1 2 3 4 5 | mat1rhmval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉  ∧  ( 1r ‘ 𝑅 )  ∈  𝐾 )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  { 〈 𝑂 ,  ( 1r ‘ 𝑅 ) 〉 } ) | 
						
							| 86 | 84 85 | mpd3an3 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  { 〈 𝑂 ,  ( 1r ‘ 𝑅 ) 〉 } ) | 
						
							| 87 | 2 1 4 | mat1dimid | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 1r ‘ 𝐴 )  =  { 〈 𝑂 ,  ( 1r ‘ 𝑅 ) 〉 } ) | 
						
							| 88 | 86 87 | eqtr4d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 89 | 16 81 88 | 3jca | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  ( 𝐹 : 𝐾 ⟶ 𝐵  ∧  ∀ 𝑤  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝐴 ) ) ) | 
						
							| 90 | 6 1 | mgpbas | ⊢ 𝐾  =  ( Base ‘ 𝑀 ) | 
						
							| 91 | 7 3 | mgpbas | ⊢ 𝐵  =  ( Base ‘ 𝑁 ) | 
						
							| 92 | 6 34 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ 𝑀 ) | 
						
							| 93 | 7 55 | mgpplusg | ⊢ ( .r ‘ 𝐴 )  =  ( +g ‘ 𝑁 ) | 
						
							| 94 | 6 82 | ringidval | ⊢ ( 1r ‘ 𝑅 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 95 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 96 | 7 95 | ringidval | ⊢ ( 1r ‘ 𝐴 )  =  ( 0g ‘ 𝑁 ) | 
						
							| 97 | 90 91 92 93 94 96 | ismhm | ⊢ ( 𝐹  ∈  ( 𝑀  MndHom  𝑁 )  ↔  ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  ∧  ( 𝐹 : 𝐾 ⟶ 𝐵  ∧  ∀ 𝑤  ∈  𝐾 ∀ 𝑦  ∈  𝐾 ( 𝐹 ‘ ( 𝑤 ( .r ‘ 𝑅 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑤 ) ( .r ‘ 𝐴 ) ( 𝐹 ‘ 𝑦 ) )  ∧  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝐴 ) ) ) ) | 
						
							| 98 | 9 15 89 97 | syl21anbrc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐸  ∈  𝑉 )  →  𝐹  ∈  ( 𝑀  MndHom  𝑁 ) ) |