| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat2pmatbas.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 2 |  | mat2pmatbas.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | mat2pmatbas.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | mat2pmatbas.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | mat2pmatbas.c |  |-  C = ( N Mat P ) | 
						
							| 6 |  | mat2pmatbas0.h |  |-  H = ( Base ` C ) | 
						
							| 7 |  | simpl |  |-  ( ( N e. Fin /\ R e. Ring ) -> N e. Fin ) | 
						
							| 8 | 7 7 | jca |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( N e. Fin /\ N e. Fin ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ m e. B ) -> ( N e. Fin /\ N e. Fin ) ) | 
						
							| 10 |  | mpoexga |  |-  ( ( N e. Fin /\ N e. Fin ) -> ( x e. N , y e. N |-> ( ( algSc ` P ) ` ( x m y ) ) ) e. _V ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ m e. B ) -> ( x e. N , y e. N |-> ( ( algSc ` P ) ` ( x m y ) ) ) e. _V ) | 
						
							| 12 |  | eqid |  |-  ( algSc ` P ) = ( algSc ` P ) | 
						
							| 13 | 1 2 3 4 12 | mat2pmatfval |  |-  ( ( N e. Fin /\ R e. Ring ) -> T = ( m e. B |-> ( x e. N , y e. N |-> ( ( algSc ` P ) ` ( x m y ) ) ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 | mat2pmatbas0 |  |-  ( ( N e. Fin /\ R e. Ring /\ m e. B ) -> ( T ` m ) e. H ) | 
						
							| 15 | 14 | 3expa |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ m e. B ) -> ( T ` m ) e. H ) | 
						
							| 16 | 11 13 15 | fmpt2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : B --> H ) |