Step |
Hyp |
Ref |
Expression |
1 |
|
mat2pmatbas.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
2 |
|
mat2pmatbas.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
3 |
|
mat2pmatbas.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
|
mat2pmatbas.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
5 |
|
mat2pmatbas.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
6 |
|
mat2pmatbas0.h |
⊢ 𝐻 = ( Base ‘ 𝐶 ) |
7 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑁 ∈ Fin ) |
8 |
7 7
|
jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
10 |
|
mpoexga |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ∈ V ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ∈ V ) |
12 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
13 |
1 2 3 4 12
|
mat2pmatfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ) |
14 |
1 2 3 4 5 6
|
mat2pmatbas0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑚 ) ∈ 𝐻 ) |
15 |
14
|
3expa |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑚 ) ∈ 𝐻 ) |
16 |
11 13 15
|
fmpt2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 ⟶ 𝐻 ) |