| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat2pmatbas.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 2 |  | mat2pmatbas.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 3 |  | mat2pmatbas.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 4 |  | mat2pmatbas.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 5 |  | mat2pmatbas.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 6 |  | mat2pmatbas0.h | ⊢ 𝐻  =  ( Base ‘ 𝐶 ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑁  ∈  Fin ) | 
						
							| 8 | 7 7 | jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑚  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) ) | 
						
							| 10 |  | mpoexga | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑚 𝑦 ) ) )  ∈  V ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑚  ∈  𝐵 )  →  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑚 𝑦 ) ) )  ∈  V ) | 
						
							| 12 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 13 | 1 2 3 4 12 | mat2pmatfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  =  ( 𝑚  ∈  𝐵  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 | mat2pmatbas0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑚  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑚 )  ∈  𝐻 ) | 
						
							| 15 | 14 | 3expa | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑚  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑚 )  ∈  𝐻 ) | 
						
							| 16 | 11 13 15 | fmpt2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐵 ⟶ 𝐻 ) |