Metamath Proof Explorer


Theorem mat2pmatf

Description: The matrix transformation is a function from the matrices to the polynomial matrices. (Contributed by AV, 27-Oct-2019)

Ref Expression
Hypotheses mat2pmatbas.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
mat2pmatbas.a 𝐴 = ( 𝑁 Mat 𝑅 )
mat2pmatbas.b 𝐵 = ( Base ‘ 𝐴 )
mat2pmatbas.p 𝑃 = ( Poly1𝑅 )
mat2pmatbas.c 𝐶 = ( 𝑁 Mat 𝑃 )
mat2pmatbas0.h 𝐻 = ( Base ‘ 𝐶 )
Assertion mat2pmatf ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵𝐻 )

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
2 mat2pmatbas.a 𝐴 = ( 𝑁 Mat 𝑅 )
3 mat2pmatbas.b 𝐵 = ( Base ‘ 𝐴 )
4 mat2pmatbas.p 𝑃 = ( Poly1𝑅 )
5 mat2pmatbas.c 𝐶 = ( 𝑁 Mat 𝑃 )
6 mat2pmatbas0.h 𝐻 = ( Base ‘ 𝐶 )
7 simpl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑁 ∈ Fin )
8 7 7 jca ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) )
9 8 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) )
10 mpoexga ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑥𝑁 , 𝑦𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ∈ V )
11 9 10 syl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚𝐵 ) → ( 𝑥𝑁 , 𝑦𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ∈ V )
12 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
13 1 2 3 4 12 mat2pmatfval ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 = ( 𝑚𝐵 ↦ ( 𝑥𝑁 , 𝑦𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑥 𝑚 𝑦 ) ) ) ) )
14 1 2 3 4 5 6 mat2pmatbas0 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚𝐵 ) → ( 𝑇𝑚 ) ∈ 𝐻 )
15 14 3expa ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚𝐵 ) → ( 𝑇𝑚 ) ∈ 𝐻 )
16 11 13 15 fmpt2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵𝐻 )