Description: A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | maxidlnr.1 | |- G = ( 1st ` R ) |
|
maxidlnr.2 | |- X = ran G |
||
Assertion | maxidlnr | |- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> M =/= X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxidlnr.1 | |- G = ( 1st ` R ) |
|
2 | maxidlnr.2 | |- X = ran G |
|
3 | 1 2 | ismaxidl | |- ( R e. RingOps -> ( M e. ( MaxIdl ` R ) <-> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) ) |
4 | 3 | biimpa | |- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) |
5 | 4 | simp2d | |- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> M =/= X ) |