Description: A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | maxidlnr.1 | |- G = ( 1st ` R ) | |
| maxidlnr.2 | |- X = ran G | ||
| Assertion | maxidlnr | |- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> M =/= X ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | maxidlnr.1 | |- G = ( 1st ` R ) | |
| 2 | maxidlnr.2 | |- X = ran G | |
| 3 | 1 2 | ismaxidl | |- ( R e. RingOps -> ( M e. ( MaxIdl ` R ) <-> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) ) | 
| 4 | 3 | biimpa | |- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) | 
| 5 | 4 | simp2d | |- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> M =/= X ) |