Metamath Proof Explorer


Theorem maxidlnr

Description: A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses maxidlnr.1
|- G = ( 1st ` R )
maxidlnr.2
|- X = ran G
Assertion maxidlnr
|- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> M =/= X )

Proof

Step Hyp Ref Expression
1 maxidlnr.1
 |-  G = ( 1st ` R )
2 maxidlnr.2
 |-  X = ran G
3 1 2 ismaxidl
 |-  ( R e. RingOps -> ( M e. ( MaxIdl ` R ) <-> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) )
4 3 biimpa
 |-  ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) )
5 4 simp2d
 |-  ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> M =/= X )