Step |
Hyp |
Ref |
Expression |
1 |
|
ismaxidl.1 |
|- G = ( 1st ` R ) |
2 |
|
ismaxidl.2 |
|- X = ran G |
3 |
1 2
|
maxidlval |
|- ( R e. RingOps -> ( MaxIdl ` R ) = { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } ) |
4 |
3
|
eleq2d |
|- ( R e. RingOps -> ( M e. ( MaxIdl ` R ) <-> M e. { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } ) ) |
5 |
|
neeq1 |
|- ( i = M -> ( i =/= X <-> M =/= X ) ) |
6 |
|
sseq1 |
|- ( i = M -> ( i C_ j <-> M C_ j ) ) |
7 |
|
eqeq2 |
|- ( i = M -> ( j = i <-> j = M ) ) |
8 |
7
|
orbi1d |
|- ( i = M -> ( ( j = i \/ j = X ) <-> ( j = M \/ j = X ) ) ) |
9 |
6 8
|
imbi12d |
|- ( i = M -> ( ( i C_ j -> ( j = i \/ j = X ) ) <-> ( M C_ j -> ( j = M \/ j = X ) ) ) ) |
10 |
9
|
ralbidv |
|- ( i = M -> ( A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) <-> A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) |
11 |
5 10
|
anbi12d |
|- ( i = M -> ( ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) <-> ( M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) ) |
12 |
11
|
elrab |
|- ( M e. { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } <-> ( M e. ( Idl ` R ) /\ ( M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) ) |
13 |
|
3anass |
|- ( ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) <-> ( M e. ( Idl ` R ) /\ ( M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) ) |
14 |
12 13
|
bitr4i |
|- ( M e. { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } <-> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) |
15 |
4 14
|
bitrdi |
|- ( R e. RingOps -> ( M e. ( MaxIdl ` R ) <-> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) ) |