| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismaxidl.1 |  |-  G = ( 1st ` R ) | 
						
							| 2 |  | ismaxidl.2 |  |-  X = ran G | 
						
							| 3 | 1 2 | maxidlval |  |-  ( R e. RingOps -> ( MaxIdl ` R ) = { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } ) | 
						
							| 4 | 3 | eleq2d |  |-  ( R e. RingOps -> ( M e. ( MaxIdl ` R ) <-> M e. { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } ) ) | 
						
							| 5 |  | neeq1 |  |-  ( i = M -> ( i =/= X <-> M =/= X ) ) | 
						
							| 6 |  | sseq1 |  |-  ( i = M -> ( i C_ j <-> M C_ j ) ) | 
						
							| 7 |  | eqeq2 |  |-  ( i = M -> ( j = i <-> j = M ) ) | 
						
							| 8 | 7 | orbi1d |  |-  ( i = M -> ( ( j = i \/ j = X ) <-> ( j = M \/ j = X ) ) ) | 
						
							| 9 | 6 8 | imbi12d |  |-  ( i = M -> ( ( i C_ j -> ( j = i \/ j = X ) ) <-> ( M C_ j -> ( j = M \/ j = X ) ) ) ) | 
						
							| 10 | 9 | ralbidv |  |-  ( i = M -> ( A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) <-> A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) | 
						
							| 11 | 5 10 | anbi12d |  |-  ( i = M -> ( ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) <-> ( M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) ) | 
						
							| 12 | 11 | elrab |  |-  ( M e. { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } <-> ( M e. ( Idl ` R ) /\ ( M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) ) | 
						
							| 13 |  | 3anass |  |-  ( ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) <-> ( M e. ( Idl ` R ) /\ ( M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) ) | 
						
							| 14 | 12 13 | bitr4i |  |-  ( M e. { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } <-> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) | 
						
							| 15 | 4 14 | bitrdi |  |-  ( R e. RingOps -> ( M e. ( MaxIdl ` R ) <-> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) ) |