Step |
Hyp |
Ref |
Expression |
1 |
|
ismaxidl.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
ismaxidl.2 |
⊢ 𝑋 = ran 𝐺 |
3 |
1 2
|
maxidlval |
⊢ ( 𝑅 ∈ RingOps → ( MaxIdl ‘ 𝑅 ) = { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝑋 ) ) ) } ) |
4 |
3
|
eleq2d |
⊢ ( 𝑅 ∈ RingOps → ( 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ↔ 𝑀 ∈ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝑋 ) ) ) } ) ) |
5 |
|
neeq1 |
⊢ ( 𝑖 = 𝑀 → ( 𝑖 ≠ 𝑋 ↔ 𝑀 ≠ 𝑋 ) ) |
6 |
|
sseq1 |
⊢ ( 𝑖 = 𝑀 → ( 𝑖 ⊆ 𝑗 ↔ 𝑀 ⊆ 𝑗 ) ) |
7 |
|
eqeq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑗 = 𝑖 ↔ 𝑗 = 𝑀 ) ) |
8 |
7
|
orbi1d |
⊢ ( 𝑖 = 𝑀 → ( ( 𝑗 = 𝑖 ∨ 𝑗 = 𝑋 ) ↔ ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) |
9 |
6 8
|
imbi12d |
⊢ ( 𝑖 = 𝑀 → ( ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝑋 ) ) ↔ ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑖 = 𝑀 → ( ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝑋 ) ) ↔ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) ) |
11 |
5 10
|
anbi12d |
⊢ ( 𝑖 = 𝑀 → ( ( 𝑖 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝑋 ) ) ) ↔ ( 𝑀 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) ) ) |
12 |
11
|
elrab |
⊢ ( 𝑀 ∈ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝑋 ) ) ) } ↔ ( 𝑀 ∈ ( Idl ‘ 𝑅 ) ∧ ( 𝑀 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) ) ) |
13 |
|
3anass |
⊢ ( ( 𝑀 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑀 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) ↔ ( 𝑀 ∈ ( Idl ‘ 𝑅 ) ∧ ( 𝑀 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) ) ) |
14 |
12 13
|
bitr4i |
⊢ ( 𝑀 ∈ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝑋 ) ) ) } ↔ ( 𝑀 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑀 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) ) |
15 |
4 14
|
bitrdi |
⊢ ( 𝑅 ∈ RingOps → ( 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑀 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) ) ) |