| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismaxidl.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑅 ) | 
						
							| 2 |  | ismaxidl.2 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 3 | 1 2 | maxidlval | ⊢ ( 𝑅  ∈  RingOps  →  ( MaxIdl ‘ 𝑅 )  =  { 𝑖  ∈  ( Idl ‘ 𝑅 )  ∣  ( 𝑖  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑖  ⊆  𝑗  →  ( 𝑗  =  𝑖  ∨  𝑗  =  𝑋 ) ) ) } ) | 
						
							| 4 | 3 | eleq2d | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝑀  ∈  ( MaxIdl ‘ 𝑅 )  ↔  𝑀  ∈  { 𝑖  ∈  ( Idl ‘ 𝑅 )  ∣  ( 𝑖  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑖  ⊆  𝑗  →  ( 𝑗  =  𝑖  ∨  𝑗  =  𝑋 ) ) ) } ) ) | 
						
							| 5 |  | neeq1 | ⊢ ( 𝑖  =  𝑀  →  ( 𝑖  ≠  𝑋  ↔  𝑀  ≠  𝑋 ) ) | 
						
							| 6 |  | sseq1 | ⊢ ( 𝑖  =  𝑀  →  ( 𝑖  ⊆  𝑗  ↔  𝑀  ⊆  𝑗 ) ) | 
						
							| 7 |  | eqeq2 | ⊢ ( 𝑖  =  𝑀  →  ( 𝑗  =  𝑖  ↔  𝑗  =  𝑀 ) ) | 
						
							| 8 | 7 | orbi1d | ⊢ ( 𝑖  =  𝑀  →  ( ( 𝑗  =  𝑖  ∨  𝑗  =  𝑋 )  ↔  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) ) | 
						
							| 9 | 6 8 | imbi12d | ⊢ ( 𝑖  =  𝑀  →  ( ( 𝑖  ⊆  𝑗  →  ( 𝑗  =  𝑖  ∨  𝑗  =  𝑋 ) )  ↔  ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) ) ) | 
						
							| 10 | 9 | ralbidv | ⊢ ( 𝑖  =  𝑀  →  ( ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑖  ⊆  𝑗  →  ( 𝑗  =  𝑖  ∨  𝑗  =  𝑋 ) )  ↔  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) ) ) | 
						
							| 11 | 5 10 | anbi12d | ⊢ ( 𝑖  =  𝑀  →  ( ( 𝑖  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑖  ⊆  𝑗  →  ( 𝑗  =  𝑖  ∨  𝑗  =  𝑋 ) ) )  ↔  ( 𝑀  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) ) ) ) | 
						
							| 12 | 11 | elrab | ⊢ ( 𝑀  ∈  { 𝑖  ∈  ( Idl ‘ 𝑅 )  ∣  ( 𝑖  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑖  ⊆  𝑗  →  ( 𝑗  =  𝑖  ∨  𝑗  =  𝑋 ) ) ) }  ↔  ( 𝑀  ∈  ( Idl ‘ 𝑅 )  ∧  ( 𝑀  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) ) ) ) | 
						
							| 13 |  | 3anass | ⊢ ( ( 𝑀  ∈  ( Idl ‘ 𝑅 )  ∧  𝑀  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) )  ↔  ( 𝑀  ∈  ( Idl ‘ 𝑅 )  ∧  ( 𝑀  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) ) ) ) | 
						
							| 14 | 12 13 | bitr4i | ⊢ ( 𝑀  ∈  { 𝑖  ∈  ( Idl ‘ 𝑅 )  ∣  ( 𝑖  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑖  ⊆  𝑗  →  ( 𝑗  =  𝑖  ∨  𝑗  =  𝑋 ) ) ) }  ↔  ( 𝑀  ∈  ( Idl ‘ 𝑅 )  ∧  𝑀  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) ) ) | 
						
							| 15 | 4 14 | bitrdi | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝑀  ∈  ( MaxIdl ‘ 𝑅 )  ↔  ( 𝑀  ∈  ( Idl ‘ 𝑅 )  ∧  𝑀  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) ) ) ) |