Metamath Proof Explorer


Theorem ismaxidl

Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Hypotheses ismaxidl.1 G = 1 st R
ismaxidl.2 X = ran G
Assertion ismaxidl R RingOps M MaxIdl R M Idl R M X j Idl R M j j = M j = X

Proof

Step Hyp Ref Expression
1 ismaxidl.1 G = 1 st R
2 ismaxidl.2 X = ran G
3 1 2 maxidlval R RingOps MaxIdl R = i Idl R | i X j Idl R i j j = i j = X
4 3 eleq2d R RingOps M MaxIdl R M i Idl R | i X j Idl R i j j = i j = X
5 neeq1 i = M i X M X
6 sseq1 i = M i j M j
7 eqeq2 i = M j = i j = M
8 7 orbi1d i = M j = i j = X j = M j = X
9 6 8 imbi12d i = M i j j = i j = X M j j = M j = X
10 9 ralbidv i = M j Idl R i j j = i j = X j Idl R M j j = M j = X
11 5 10 anbi12d i = M i X j Idl R i j j = i j = X M X j Idl R M j j = M j = X
12 11 elrab M i Idl R | i X j Idl R i j j = i j = X M Idl R M X j Idl R M j j = M j = X
13 3anass M Idl R M X j Idl R M j j = M j = X M Idl R M X j Idl R M j j = M j = X
14 12 13 bitr4i M i Idl R | i X j Idl R i j j = i j = X M Idl R M X j Idl R M j j = M j = X
15 4 14 bitrdi R RingOps M MaxIdl R M Idl R M X j Idl R M j j = M j = X