Metamath Proof Explorer


Theorem maxidlval

Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Hypotheses maxidlval.1 G=1stR
maxidlval.2 X=ranG
Assertion maxidlval RRingOpsMaxIdlR=iIdlR|iXjIdlRijj=ij=X

Proof

Step Hyp Ref Expression
1 maxidlval.1 G=1stR
2 maxidlval.2 X=ranG
3 fveq2 r=RIdlr=IdlR
4 fveq2 r=R1str=1stR
5 4 1 eqtr4di r=R1str=G
6 5 rneqd r=Rran1str=ranG
7 6 2 eqtr4di r=Rran1str=X
8 7 neeq2d r=Riran1striX
9 7 eqeq2d r=Rj=ran1strj=X
10 9 orbi2d r=Rj=ij=ran1strj=ij=X
11 10 imbi2d r=Rijj=ij=ran1strijj=ij=X
12 3 11 raleqbidv r=RjIdlrijj=ij=ran1strjIdlRijj=ij=X
13 8 12 anbi12d r=Riran1strjIdlrijj=ij=ran1striXjIdlRijj=ij=X
14 3 13 rabeqbidv r=RiIdlr|iran1strjIdlrijj=ij=ran1str=iIdlR|iXjIdlRijj=ij=X
15 df-maxidl MaxIdl=rRingOpsiIdlr|iran1strjIdlrijj=ij=ran1str
16 fvex IdlRV
17 16 rabex iIdlR|iXjIdlRijj=ij=XV
18 14 15 17 fvmpt RRingOpsMaxIdlR=iIdlR|iXjIdlRijj=ij=X