| Step |
Hyp |
Ref |
Expression |
| 1 |
|
maxidlval.1 |
|- G = ( 1st ` R ) |
| 2 |
|
maxidlval.2 |
|- X = ran G |
| 3 |
|
fveq2 |
|- ( r = R -> ( Idl ` r ) = ( Idl ` R ) ) |
| 4 |
|
fveq2 |
|- ( r = R -> ( 1st ` r ) = ( 1st ` R ) ) |
| 5 |
4 1
|
eqtr4di |
|- ( r = R -> ( 1st ` r ) = G ) |
| 6 |
5
|
rneqd |
|- ( r = R -> ran ( 1st ` r ) = ran G ) |
| 7 |
6 2
|
eqtr4di |
|- ( r = R -> ran ( 1st ` r ) = X ) |
| 8 |
7
|
neeq2d |
|- ( r = R -> ( i =/= ran ( 1st ` r ) <-> i =/= X ) ) |
| 9 |
7
|
eqeq2d |
|- ( r = R -> ( j = ran ( 1st ` r ) <-> j = X ) ) |
| 10 |
9
|
orbi2d |
|- ( r = R -> ( ( j = i \/ j = ran ( 1st ` r ) ) <-> ( j = i \/ j = X ) ) ) |
| 11 |
10
|
imbi2d |
|- ( r = R -> ( ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) <-> ( i C_ j -> ( j = i \/ j = X ) ) ) ) |
| 12 |
3 11
|
raleqbidv |
|- ( r = R -> ( A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) <-> A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) ) |
| 13 |
8 12
|
anbi12d |
|- ( r = R -> ( ( i =/= ran ( 1st ` r ) /\ A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) ) <-> ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) ) ) |
| 14 |
3 13
|
rabeqbidv |
|- ( r = R -> { i e. ( Idl ` r ) | ( i =/= ran ( 1st ` r ) /\ A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) ) } = { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } ) |
| 15 |
|
df-maxidl |
|- MaxIdl = ( r e. RingOps |-> { i e. ( Idl ` r ) | ( i =/= ran ( 1st ` r ) /\ A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) ) } ) |
| 16 |
|
fvex |
|- ( Idl ` R ) e. _V |
| 17 |
16
|
rabex |
|- { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } e. _V |
| 18 |
14 15 17
|
fvmpt |
|- ( R e. RingOps -> ( MaxIdl ` R ) = { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } ) |