Step |
Hyp |
Ref |
Expression |
1 |
|
maxidlval.1 |
|- G = ( 1st ` R ) |
2 |
|
maxidlval.2 |
|- X = ran G |
3 |
|
fveq2 |
|- ( r = R -> ( Idl ` r ) = ( Idl ` R ) ) |
4 |
|
fveq2 |
|- ( r = R -> ( 1st ` r ) = ( 1st ` R ) ) |
5 |
4 1
|
eqtr4di |
|- ( r = R -> ( 1st ` r ) = G ) |
6 |
5
|
rneqd |
|- ( r = R -> ran ( 1st ` r ) = ran G ) |
7 |
6 2
|
eqtr4di |
|- ( r = R -> ran ( 1st ` r ) = X ) |
8 |
7
|
neeq2d |
|- ( r = R -> ( i =/= ran ( 1st ` r ) <-> i =/= X ) ) |
9 |
7
|
eqeq2d |
|- ( r = R -> ( j = ran ( 1st ` r ) <-> j = X ) ) |
10 |
9
|
orbi2d |
|- ( r = R -> ( ( j = i \/ j = ran ( 1st ` r ) ) <-> ( j = i \/ j = X ) ) ) |
11 |
10
|
imbi2d |
|- ( r = R -> ( ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) <-> ( i C_ j -> ( j = i \/ j = X ) ) ) ) |
12 |
3 11
|
raleqbidv |
|- ( r = R -> ( A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) <-> A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) ) |
13 |
8 12
|
anbi12d |
|- ( r = R -> ( ( i =/= ran ( 1st ` r ) /\ A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) ) <-> ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) ) ) |
14 |
3 13
|
rabeqbidv |
|- ( r = R -> { i e. ( Idl ` r ) | ( i =/= ran ( 1st ` r ) /\ A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) ) } = { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } ) |
15 |
|
df-maxidl |
|- MaxIdl = ( r e. RingOps |-> { i e. ( Idl ` r ) | ( i =/= ran ( 1st ` r ) /\ A. j e. ( Idl ` r ) ( i C_ j -> ( j = i \/ j = ran ( 1st ` r ) ) ) ) } ) |
16 |
|
fvex |
|- ( Idl ` R ) e. _V |
17 |
16
|
rabex |
|- { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } e. _V |
18 |
14 15 17
|
fvmpt |
|- ( R e. RingOps -> ( MaxIdl ` R ) = { i e. ( Idl ` R ) | ( i =/= X /\ A. j e. ( Idl ` R ) ( i C_ j -> ( j = i \/ j = X ) ) ) } ) |