Metamath Proof Explorer


Theorem maxidlidl

Description: A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Assertion maxidlidl RRingOpsMMaxIdlRMIdlR

Proof

Step Hyp Ref Expression
1 eqid 1stR=1stR
2 eqid ran1stR=ran1stR
3 1 2 ismaxidl RRingOpsMMaxIdlRMIdlRMran1stRjIdlRMjj=Mj=ran1stR
4 3anass MIdlRMran1stRjIdlRMjj=Mj=ran1stRMIdlRMran1stRjIdlRMjj=Mj=ran1stR
5 3 4 bitrdi RRingOpsMMaxIdlRMIdlRMran1stRjIdlRMjj=Mj=ran1stR
6 5 simprbda RRingOpsMMaxIdlRMIdlR