Metamath Proof Explorer


Theorem maxidlnr

Description: A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses maxidlnr.1 𝐺 = ( 1st𝑅 )
maxidlnr.2 𝑋 = ran 𝐺
Assertion maxidlnr ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → 𝑀𝑋 )

Proof

Step Hyp Ref Expression
1 maxidlnr.1 𝐺 = ( 1st𝑅 )
2 maxidlnr.2 𝑋 = ran 𝐺
3 1 2 ismaxidl ( 𝑅 ∈ RingOps → ( 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑀𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀𝑗 → ( 𝑗 = 𝑀𝑗 = 𝑋 ) ) ) ) )
4 3 biimpa ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → ( 𝑀 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑀𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀𝑗 → ( 𝑗 = 𝑀𝑗 = 𝑋 ) ) ) )
5 4 simp2d ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → 𝑀𝑋 )