Description: A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | maxidlnr.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| maxidlnr.2 | ⊢ 𝑋 = ran 𝐺 | ||
| Assertion | maxidlnr | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → 𝑀 ≠ 𝑋 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | maxidlnr.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | maxidlnr.2 | ⊢ 𝑋 = ran 𝐺 | |
| 3 | 1 2 | ismaxidl | ⊢ ( 𝑅 ∈ RingOps → ( 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑀 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) ) ) | 
| 4 | 3 | biimpa | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → ( 𝑀 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑀 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) ) | 
| 5 | 4 | simp2d | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → 𝑀 ≠ 𝑋 ) |