| Step | Hyp | Ref | Expression | 
						
							| 1 |  | maxidlnr.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑅 ) | 
						
							| 2 |  | maxidlnr.2 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 3 | 1 2 | ismaxidl | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝑀  ∈  ( MaxIdl ‘ 𝑅 )  ↔  ( 𝑀  ∈  ( Idl ‘ 𝑅 )  ∧  𝑀  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) ) ) ) | 
						
							| 4 | 3 | biimpa | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑀  ∈  ( MaxIdl ‘ 𝑅 ) )  →  ( 𝑀  ∈  ( Idl ‘ 𝑅 )  ∧  𝑀  ≠  𝑋  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) ) ) | 
						
							| 5 | 4 | simp3d | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑀  ∈  ( MaxIdl ‘ 𝑅 ) )  →  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) ) | 
						
							| 6 |  | sseq2 | ⊢ ( 𝑗  =  𝐼  →  ( 𝑀  ⊆  𝑗  ↔  𝑀  ⊆  𝐼 ) ) | 
						
							| 7 |  | eqeq1 | ⊢ ( 𝑗  =  𝐼  →  ( 𝑗  =  𝑀  ↔  𝐼  =  𝑀 ) ) | 
						
							| 8 |  | eqeq1 | ⊢ ( 𝑗  =  𝐼  →  ( 𝑗  =  𝑋  ↔  𝐼  =  𝑋 ) ) | 
						
							| 9 | 7 8 | orbi12d | ⊢ ( 𝑗  =  𝐼  →  ( ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 )  ↔  ( 𝐼  =  𝑀  ∨  𝐼  =  𝑋 ) ) ) | 
						
							| 10 | 6 9 | imbi12d | ⊢ ( 𝑗  =  𝐼  →  ( ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) )  ↔  ( 𝑀  ⊆  𝐼  →  ( 𝐼  =  𝑀  ∨  𝐼  =  𝑋 ) ) ) ) | 
						
							| 11 | 10 | rspcva | ⊢ ( ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑀  ⊆  𝑗  →  ( 𝑗  =  𝑀  ∨  𝑗  =  𝑋 ) ) )  →  ( 𝑀  ⊆  𝐼  →  ( 𝐼  =  𝑀  ∨  𝐼  =  𝑋 ) ) ) | 
						
							| 12 | 5 11 | sylan2 | ⊢ ( ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  ( 𝑅  ∈  RingOps  ∧  𝑀  ∈  ( MaxIdl ‘ 𝑅 ) ) )  →  ( 𝑀  ⊆  𝐼  →  ( 𝐼  =  𝑀  ∨  𝐼  =  𝑋 ) ) ) | 
						
							| 13 | 12 | ancoms | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑀  ∈  ( MaxIdl ‘ 𝑅 ) )  ∧  𝐼  ∈  ( Idl ‘ 𝑅 ) )  →  ( 𝑀  ⊆  𝐼  →  ( 𝐼  =  𝑀  ∨  𝐼  =  𝑋 ) ) ) | 
						
							| 14 | 13 | impr | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑀  ∈  ( MaxIdl ‘ 𝑅 ) )  ∧  ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑀  ⊆  𝐼 ) )  →  ( 𝐼  =  𝑀  ∨  𝐼  =  𝑋 ) ) |