Step |
Hyp |
Ref |
Expression |
1 |
|
maxidlnr.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
maxidlnr.2 |
⊢ 𝑋 = ran 𝐺 |
3 |
1 2
|
ismaxidl |
⊢ ( 𝑅 ∈ RingOps → ( 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑀 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) ) ) |
4 |
3
|
biimpa |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → ( 𝑀 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑀 ≠ 𝑋 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) ) |
5 |
4
|
simp3d |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) |
6 |
|
sseq2 |
⊢ ( 𝑗 = 𝐼 → ( 𝑀 ⊆ 𝑗 ↔ 𝑀 ⊆ 𝐼 ) ) |
7 |
|
eqeq1 |
⊢ ( 𝑗 = 𝐼 → ( 𝑗 = 𝑀 ↔ 𝐼 = 𝑀 ) ) |
8 |
|
eqeq1 |
⊢ ( 𝑗 = 𝐼 → ( 𝑗 = 𝑋 ↔ 𝐼 = 𝑋 ) ) |
9 |
7 8
|
orbi12d |
⊢ ( 𝑗 = 𝐼 → ( ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ↔ ( 𝐼 = 𝑀 ∨ 𝐼 = 𝑋 ) ) ) |
10 |
6 9
|
imbi12d |
⊢ ( 𝑗 = 𝐼 → ( ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ↔ ( 𝑀 ⊆ 𝐼 → ( 𝐼 = 𝑀 ∨ 𝐼 = 𝑋 ) ) ) ) |
11 |
10
|
rspcva |
⊢ ( ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝑋 ) ) ) → ( 𝑀 ⊆ 𝐼 → ( 𝐼 = 𝑀 ∨ 𝐼 = 𝑋 ) ) ) |
12 |
5 11
|
sylan2 |
⊢ ( ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) ) → ( 𝑀 ⊆ 𝐼 → ( 𝐼 = 𝑀 ∨ 𝐼 = 𝑋 ) ) ) |
13 |
12
|
ancoms |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝑀 ⊆ 𝐼 → ( 𝐼 = 𝑀 ∨ 𝐼 = 𝑋 ) ) ) |
14 |
13
|
impr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) ∧ ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑀 ⊆ 𝐼 ) ) → ( 𝐼 = 𝑀 ∨ 𝐼 = 𝑋 ) ) |