Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ideals
maxidlmax
Next ⟩
maxidln1
Metamath Proof Explorer
Ascii
Unicode
Theorem
maxidlmax
Description:
A maximal ideal is a maximal proper ideal.
(Contributed by
Jeff Madsen
, 16-Jun-2011)
Ref
Expression
Hypotheses
maxidlnr.1
⊢
G
=
1
st
⁡
R
maxidlnr.2
⊢
X
=
ran
⁡
G
Assertion
maxidlmax
⊢
R
∈
RingOps
∧
M
∈
MaxIdl
⁡
R
∧
I
∈
Idl
⁡
R
∧
M
⊆
I
→
I
=
M
∨
I
=
X
Proof
Step
Hyp
Ref
Expression
1
maxidlnr.1
⊢
G
=
1
st
⁡
R
2
maxidlnr.2
⊢
X
=
ran
⁡
G
3
1
2
ismaxidl
⊢
R
∈
RingOps
→
M
∈
MaxIdl
⁡
R
↔
M
∈
Idl
⁡
R
∧
M
≠
X
∧
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
4
3
biimpa
⊢
R
∈
RingOps
∧
M
∈
MaxIdl
⁡
R
→
M
∈
Idl
⁡
R
∧
M
≠
X
∧
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
5
4
simp3d
⊢
R
∈
RingOps
∧
M
∈
MaxIdl
⁡
R
→
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
6
sseq2
⊢
j
=
I
→
M
⊆
j
↔
M
⊆
I
7
eqeq1
⊢
j
=
I
→
j
=
M
↔
I
=
M
8
eqeq1
⊢
j
=
I
→
j
=
X
↔
I
=
X
9
7
8
orbi12d
⊢
j
=
I
→
j
=
M
∨
j
=
X
↔
I
=
M
∨
I
=
X
10
6
9
imbi12d
⊢
j
=
I
→
M
⊆
j
→
j
=
M
∨
j
=
X
↔
M
⊆
I
→
I
=
M
∨
I
=
X
11
10
rspcva
⊢
I
∈
Idl
⁡
R
∧
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
→
M
⊆
I
→
I
=
M
∨
I
=
X
12
5
11
sylan2
⊢
I
∈
Idl
⁡
R
∧
R
∈
RingOps
∧
M
∈
MaxIdl
⁡
R
→
M
⊆
I
→
I
=
M
∨
I
=
X
13
12
ancoms
⊢
R
∈
RingOps
∧
M
∈
MaxIdl
⁡
R
∧
I
∈
Idl
⁡
R
→
M
⊆
I
→
I
=
M
∨
I
=
X
14
13
impr
⊢
R
∈
RingOps
∧
M
∈
MaxIdl
⁡
R
∧
I
∈
Idl
⁡
R
∧
M
⊆
I
→
I
=
M
∨
I
=
X