Metamath Proof Explorer


Theorem maxidlmax

Description: A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses maxidlnr.1 G = 1 st R
maxidlnr.2 X = ran G
Assertion maxidlmax R RingOps M MaxIdl R I Idl R M I I = M I = X

Proof

Step Hyp Ref Expression
1 maxidlnr.1 G = 1 st R
2 maxidlnr.2 X = ran G
3 1 2 ismaxidl R RingOps M MaxIdl R M Idl R M X j Idl R M j j = M j = X
4 3 biimpa R RingOps M MaxIdl R M Idl R M X j Idl R M j j = M j = X
5 4 simp3d R RingOps M MaxIdl R j Idl R M j j = M j = X
6 sseq2 j = I M j M I
7 eqeq1 j = I j = M I = M
8 eqeq1 j = I j = X I = X
9 7 8 orbi12d j = I j = M j = X I = M I = X
10 6 9 imbi12d j = I M j j = M j = X M I I = M I = X
11 10 rspcva I Idl R j Idl R M j j = M j = X M I I = M I = X
12 5 11 sylan2 I Idl R R RingOps M MaxIdl R M I I = M I = X
13 12 ancoms R RingOps M MaxIdl R I Idl R M I I = M I = X
14 13 impr R RingOps M MaxIdl R I Idl R M I I = M I = X