| Step | Hyp | Ref | Expression | 
						
							| 1 |  | maxidlnr.1 |  |-  G = ( 1st ` R ) | 
						
							| 2 |  | maxidlnr.2 |  |-  X = ran G | 
						
							| 3 | 1 2 | ismaxidl |  |-  ( R e. RingOps -> ( M e. ( MaxIdl ` R ) <-> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) ) | 
						
							| 4 | 3 | biimpa |  |-  ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) | 
						
							| 5 | 4 | simp3d |  |-  ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) | 
						
							| 6 |  | sseq2 |  |-  ( j = I -> ( M C_ j <-> M C_ I ) ) | 
						
							| 7 |  | eqeq1 |  |-  ( j = I -> ( j = M <-> I = M ) ) | 
						
							| 8 |  | eqeq1 |  |-  ( j = I -> ( j = X <-> I = X ) ) | 
						
							| 9 | 7 8 | orbi12d |  |-  ( j = I -> ( ( j = M \/ j = X ) <-> ( I = M \/ I = X ) ) ) | 
						
							| 10 | 6 9 | imbi12d |  |-  ( j = I -> ( ( M C_ j -> ( j = M \/ j = X ) ) <-> ( M C_ I -> ( I = M \/ I = X ) ) ) ) | 
						
							| 11 | 10 | rspcva |  |-  ( ( I e. ( Idl ` R ) /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) -> ( M C_ I -> ( I = M \/ I = X ) ) ) | 
						
							| 12 | 5 11 | sylan2 |  |-  ( ( I e. ( Idl ` R ) /\ ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) ) -> ( M C_ I -> ( I = M \/ I = X ) ) ) | 
						
							| 13 | 12 | ancoms |  |-  ( ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) /\ I e. ( Idl ` R ) ) -> ( M C_ I -> ( I = M \/ I = X ) ) ) | 
						
							| 14 | 13 | impr |  |-  ( ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) /\ ( I e. ( Idl ` R ) /\ M C_ I ) ) -> ( I = M \/ I = X ) ) |