Step |
Hyp |
Ref |
Expression |
1 |
|
maxidlnr.1 |
|- G = ( 1st ` R ) |
2 |
|
maxidlnr.2 |
|- X = ran G |
3 |
1 2
|
ismaxidl |
|- ( R e. RingOps -> ( M e. ( MaxIdl ` R ) <-> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) ) |
4 |
3
|
biimpa |
|- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> ( M e. ( Idl ` R ) /\ M =/= X /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) ) |
5 |
4
|
simp3d |
|- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) |
6 |
|
sseq2 |
|- ( j = I -> ( M C_ j <-> M C_ I ) ) |
7 |
|
eqeq1 |
|- ( j = I -> ( j = M <-> I = M ) ) |
8 |
|
eqeq1 |
|- ( j = I -> ( j = X <-> I = X ) ) |
9 |
7 8
|
orbi12d |
|- ( j = I -> ( ( j = M \/ j = X ) <-> ( I = M \/ I = X ) ) ) |
10 |
6 9
|
imbi12d |
|- ( j = I -> ( ( M C_ j -> ( j = M \/ j = X ) ) <-> ( M C_ I -> ( I = M \/ I = X ) ) ) ) |
11 |
10
|
rspcva |
|- ( ( I e. ( Idl ` R ) /\ A. j e. ( Idl ` R ) ( M C_ j -> ( j = M \/ j = X ) ) ) -> ( M C_ I -> ( I = M \/ I = X ) ) ) |
12 |
5 11
|
sylan2 |
|- ( ( I e. ( Idl ` R ) /\ ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) ) -> ( M C_ I -> ( I = M \/ I = X ) ) ) |
13 |
12
|
ancoms |
|- ( ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) /\ I e. ( Idl ` R ) ) -> ( M C_ I -> ( I = M \/ I = X ) ) ) |
14 |
13
|
impr |
|- ( ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) /\ ( I e. ( Idl ` R ) /\ M C_ I ) ) -> ( I = M \/ I = X ) ) |