| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbflim.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
mbflim.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
mbflim.4 |
|- ( ( ph /\ x e. A ) -> ( n e. Z |-> B ) ~~> C ) |
| 4 |
|
mbflim.5 |
|- ( ( ph /\ n e. Z ) -> ( x e. A |-> B ) e. MblFn ) |
| 5 |
|
mbflimlem.6 |
|- ( ( ph /\ ( n e. Z /\ x e. A ) ) -> B e. RR ) |
| 6 |
5
|
anass1rs |
|- ( ( ( ph /\ x e. A ) /\ n e. Z ) -> B e. RR ) |
| 7 |
6
|
fmpttd |
|- ( ( ph /\ x e. A ) -> ( n e. Z |-> B ) : Z --> RR ) |
| 8 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> M e. ZZ ) |
| 9 |
|
climrel |
|- Rel ~~> |
| 10 |
9
|
releldmi |
|- ( ( n e. Z |-> B ) ~~> C -> ( n e. Z |-> B ) e. dom ~~> ) |
| 11 |
3 10
|
syl |
|- ( ( ph /\ x e. A ) -> ( n e. Z |-> B ) e. dom ~~> ) |
| 12 |
1
|
climcau |
|- ( ( M e. ZZ /\ ( n e. Z |-> B ) e. dom ~~> ) -> A. y e. RR+ E. k e. Z A. j e. ( ZZ>= ` k ) ( abs ` ( ( ( n e. Z |-> B ) ` j ) - ( ( n e. Z |-> B ) ` k ) ) ) < y ) |
| 13 |
8 11 12
|
syl2anc |
|- ( ( ph /\ x e. A ) -> A. y e. RR+ E. k e. Z A. j e. ( ZZ>= ` k ) ( abs ` ( ( ( n e. Z |-> B ) ` j ) - ( ( n e. Z |-> B ) ` k ) ) ) < y ) |
| 14 |
1 7 13
|
caurcvg |
|- ( ( ph /\ x e. A ) -> ( n e. Z |-> B ) ~~> ( limsup ` ( n e. Z |-> B ) ) ) |
| 15 |
|
climuni |
|- ( ( ( n e. Z |-> B ) ~~> ( limsup ` ( n e. Z |-> B ) ) /\ ( n e. Z |-> B ) ~~> C ) -> ( limsup ` ( n e. Z |-> B ) ) = C ) |
| 16 |
14 3 15
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( limsup ` ( n e. Z |-> B ) ) = C ) |
| 17 |
16
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( limsup ` ( n e. Z |-> B ) ) ) = ( x e. A |-> C ) ) |
| 18 |
|
eqid |
|- ( x e. A |-> ( limsup ` ( n e. Z |-> B ) ) ) = ( x e. A |-> ( limsup ` ( n e. Z |-> B ) ) ) |
| 19 |
|
eqid |
|- ( m e. RR |-> sup ( ( ( ( n e. Z |-> B ) " ( m [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( m e. RR |-> sup ( ( ( ( n e. Z |-> B ) " ( m [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 20 |
7
|
ffvelcdmda |
|- ( ( ( ph /\ x e. A ) /\ k e. Z ) -> ( ( n e. Z |-> B ) ` k ) e. RR ) |
| 21 |
1 8 14 20
|
climrecl |
|- ( ( ph /\ x e. A ) -> ( limsup ` ( n e. Z |-> B ) ) e. RR ) |
| 22 |
1 18 19 2 21 4 5
|
mbflimsup |
|- ( ph -> ( x e. A |-> ( limsup ` ( n e. Z |-> B ) ) ) e. MblFn ) |
| 23 |
17 22
|
eqeltrrd |
|- ( ph -> ( x e. A |-> C ) e. MblFn ) |