| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmulc2re.1 |
|- ( ph -> F e. MblFn ) |
| 2 |
|
mbfmulc2re.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
mbfmulc2re.3 |
|- ( ph -> F : A --> CC ) |
| 4 |
3
|
fdmd |
|- ( ph -> dom F = A ) |
| 5 |
1
|
dmexd |
|- ( ph -> dom F e. _V ) |
| 6 |
4 5
|
eqeltrrd |
|- ( ph -> A e. _V ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 8 |
3
|
ffvelcdmda |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. CC ) |
| 9 |
|
fconstmpt |
|- ( A X. { B } ) = ( x e. A |-> B ) |
| 10 |
9
|
a1i |
|- ( ph -> ( A X. { B } ) = ( x e. A |-> B ) ) |
| 11 |
3
|
feqmptd |
|- ( ph -> F = ( x e. A |-> ( F ` x ) ) ) |
| 12 |
6 7 8 10 11
|
offval2 |
|- ( ph -> ( ( A X. { B } ) oF x. F ) = ( x e. A |-> ( B x. ( F ` x ) ) ) ) |
| 13 |
7 8
|
remul2d |
|- ( ( ph /\ x e. A ) -> ( Re ` ( B x. ( F ` x ) ) ) = ( B x. ( Re ` ( F ` x ) ) ) ) |
| 14 |
13
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( Re ` ( B x. ( F ` x ) ) ) ) = ( x e. A |-> ( B x. ( Re ` ( F ` x ) ) ) ) ) |
| 15 |
8
|
recld |
|- ( ( ph /\ x e. A ) -> ( Re ` ( F ` x ) ) e. RR ) |
| 16 |
|
eqidd |
|- ( ph -> ( x e. A |-> ( Re ` ( F ` x ) ) ) = ( x e. A |-> ( Re ` ( F ` x ) ) ) ) |
| 17 |
6 7 15 10 16
|
offval2 |
|- ( ph -> ( ( A X. { B } ) oF x. ( x e. A |-> ( Re ` ( F ` x ) ) ) ) = ( x e. A |-> ( B x. ( Re ` ( F ` x ) ) ) ) ) |
| 18 |
14 17
|
eqtr4d |
|- ( ph -> ( x e. A |-> ( Re ` ( B x. ( F ` x ) ) ) ) = ( ( A X. { B } ) oF x. ( x e. A |-> ( Re ` ( F ` x ) ) ) ) ) |
| 19 |
11 1
|
eqeltrrd |
|- ( ph -> ( x e. A |-> ( F ` x ) ) e. MblFn ) |
| 20 |
8
|
ismbfcn2 |
|- ( ph -> ( ( x e. A |-> ( F ` x ) ) e. MblFn <-> ( ( x e. A |-> ( Re ` ( F ` x ) ) ) e. MblFn /\ ( x e. A |-> ( Im ` ( F ` x ) ) ) e. MblFn ) ) ) |
| 21 |
19 20
|
mpbid |
|- ( ph -> ( ( x e. A |-> ( Re ` ( F ` x ) ) ) e. MblFn /\ ( x e. A |-> ( Im ` ( F ` x ) ) ) e. MblFn ) ) |
| 22 |
21
|
simpld |
|- ( ph -> ( x e. A |-> ( Re ` ( F ` x ) ) ) e. MblFn ) |
| 23 |
15
|
fmpttd |
|- ( ph -> ( x e. A |-> ( Re ` ( F ` x ) ) ) : A --> RR ) |
| 24 |
22 2 23
|
mbfmulc2lem |
|- ( ph -> ( ( A X. { B } ) oF x. ( x e. A |-> ( Re ` ( F ` x ) ) ) ) e. MblFn ) |
| 25 |
18 24
|
eqeltrd |
|- ( ph -> ( x e. A |-> ( Re ` ( B x. ( F ` x ) ) ) ) e. MblFn ) |
| 26 |
7 8
|
immul2d |
|- ( ( ph /\ x e. A ) -> ( Im ` ( B x. ( F ` x ) ) ) = ( B x. ( Im ` ( F ` x ) ) ) ) |
| 27 |
26
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( Im ` ( B x. ( F ` x ) ) ) ) = ( x e. A |-> ( B x. ( Im ` ( F ` x ) ) ) ) ) |
| 28 |
8
|
imcld |
|- ( ( ph /\ x e. A ) -> ( Im ` ( F ` x ) ) e. RR ) |
| 29 |
|
eqidd |
|- ( ph -> ( x e. A |-> ( Im ` ( F ` x ) ) ) = ( x e. A |-> ( Im ` ( F ` x ) ) ) ) |
| 30 |
6 7 28 10 29
|
offval2 |
|- ( ph -> ( ( A X. { B } ) oF x. ( x e. A |-> ( Im ` ( F ` x ) ) ) ) = ( x e. A |-> ( B x. ( Im ` ( F ` x ) ) ) ) ) |
| 31 |
27 30
|
eqtr4d |
|- ( ph -> ( x e. A |-> ( Im ` ( B x. ( F ` x ) ) ) ) = ( ( A X. { B } ) oF x. ( x e. A |-> ( Im ` ( F ` x ) ) ) ) ) |
| 32 |
21
|
simprd |
|- ( ph -> ( x e. A |-> ( Im ` ( F ` x ) ) ) e. MblFn ) |
| 33 |
28
|
fmpttd |
|- ( ph -> ( x e. A |-> ( Im ` ( F ` x ) ) ) : A --> RR ) |
| 34 |
32 2 33
|
mbfmulc2lem |
|- ( ph -> ( ( A X. { B } ) oF x. ( x e. A |-> ( Im ` ( F ` x ) ) ) ) e. MblFn ) |
| 35 |
31 34
|
eqeltrd |
|- ( ph -> ( x e. A |-> ( Im ` ( B x. ( F ` x ) ) ) ) e. MblFn ) |
| 36 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
| 38 |
37 8
|
mulcld |
|- ( ( ph /\ x e. A ) -> ( B x. ( F ` x ) ) e. CC ) |
| 39 |
38
|
ismbfcn2 |
|- ( ph -> ( ( x e. A |-> ( B x. ( F ` x ) ) ) e. MblFn <-> ( ( x e. A |-> ( Re ` ( B x. ( F ` x ) ) ) ) e. MblFn /\ ( x e. A |-> ( Im ` ( B x. ( F ` x ) ) ) ) e. MblFn ) ) ) |
| 40 |
25 35 39
|
mpbir2and |
|- ( ph -> ( x e. A |-> ( B x. ( F ` x ) ) ) e. MblFn ) |
| 41 |
12 40
|
eqeltrd |
|- ( ph -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |