| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdslmd.1 |
|- A e. CH |
| 2 |
|
mdslmd.2 |
|- B e. CH |
| 3 |
|
mdslmd.3 |
|- C e. CH |
| 4 |
|
mdslmd.4 |
|- D e. CH |
| 5 |
3 4
|
chjcli |
|- ( C vH D ) e. CH |
| 6 |
5 2 1
|
chlej1i |
|- ( ( C vH D ) C_ B -> ( ( C vH D ) vH A ) C_ ( B vH A ) ) |
| 7 |
3 4 1
|
chjjdiri |
|- ( ( C vH D ) vH A ) = ( ( C vH A ) vH ( D vH A ) ) |
| 8 |
2 1
|
chjcomi |
|- ( B vH A ) = ( A vH B ) |
| 9 |
6 7 8
|
3sstr3g |
|- ( ( C vH D ) C_ B -> ( ( C vH A ) vH ( D vH A ) ) C_ ( A vH B ) ) |
| 10 |
9
|
adantl |
|- ( ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) -> ( ( C vH A ) vH ( D vH A ) ) C_ ( A vH B ) ) |
| 11 |
1 3
|
chub2i |
|- A C_ ( C vH A ) |
| 12 |
1 4
|
chub2i |
|- A C_ ( D vH A ) |
| 13 |
11 12
|
ssini |
|- A C_ ( ( C vH A ) i^i ( D vH A ) ) |
| 14 |
10 13
|
jctil |
|- ( ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) -> ( A C_ ( ( C vH A ) i^i ( D vH A ) ) /\ ( ( C vH A ) vH ( D vH A ) ) C_ ( A vH B ) ) ) |
| 15 |
3 1
|
chjcli |
|- ( C vH A ) e. CH |
| 16 |
4 1
|
chjcli |
|- ( D vH A ) e. CH |
| 17 |
1 2 15 16
|
mdslmd1i |
|- ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( ( C vH A ) i^i ( D vH A ) ) /\ ( ( C vH A ) vH ( D vH A ) ) C_ ( A vH B ) ) ) -> ( ( C vH A ) MH ( D vH A ) <-> ( ( C vH A ) i^i B ) MH ( ( D vH A ) i^i B ) ) ) |
| 18 |
14 17
|
sylan2 |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) ) -> ( ( C vH A ) MH ( D vH A ) <-> ( ( C vH A ) i^i B ) MH ( ( D vH A ) i^i B ) ) ) |
| 19 |
|
id |
|- ( A MH B -> A MH B ) |
| 20 |
|
inss1 |
|- ( C i^i D ) C_ C |
| 21 |
|
sstr |
|- ( ( ( A i^i B ) C_ ( C i^i D ) /\ ( C i^i D ) C_ C ) -> ( A i^i B ) C_ C ) |
| 22 |
20 21
|
mpan2 |
|- ( ( A i^i B ) C_ ( C i^i D ) -> ( A i^i B ) C_ C ) |
| 23 |
3 4
|
chub1i |
|- C C_ ( C vH D ) |
| 24 |
|
sstr |
|- ( ( C C_ ( C vH D ) /\ ( C vH D ) C_ B ) -> C C_ B ) |
| 25 |
23 24
|
mpan |
|- ( ( C vH D ) C_ B -> C C_ B ) |
| 26 |
1 2 3
|
3pm3.2i |
|- ( A e. CH /\ B e. CH /\ C e. CH ) |
| 27 |
|
mdsl3 |
|- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ ( A MH B /\ ( A i^i B ) C_ C /\ C C_ B ) ) -> ( ( C vH A ) i^i B ) = C ) |
| 28 |
26 27
|
mpan |
|- ( ( A MH B /\ ( A i^i B ) C_ C /\ C C_ B ) -> ( ( C vH A ) i^i B ) = C ) |
| 29 |
19 22 25 28
|
syl3an |
|- ( ( A MH B /\ ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) -> ( ( C vH A ) i^i B ) = C ) |
| 30 |
|
inss2 |
|- ( C i^i D ) C_ D |
| 31 |
|
sstr |
|- ( ( ( A i^i B ) C_ ( C i^i D ) /\ ( C i^i D ) C_ D ) -> ( A i^i B ) C_ D ) |
| 32 |
30 31
|
mpan2 |
|- ( ( A i^i B ) C_ ( C i^i D ) -> ( A i^i B ) C_ D ) |
| 33 |
4 3
|
chub2i |
|- D C_ ( C vH D ) |
| 34 |
|
sstr |
|- ( ( D C_ ( C vH D ) /\ ( C vH D ) C_ B ) -> D C_ B ) |
| 35 |
33 34
|
mpan |
|- ( ( C vH D ) C_ B -> D C_ B ) |
| 36 |
1 2 4
|
3pm3.2i |
|- ( A e. CH /\ B e. CH /\ D e. CH ) |
| 37 |
|
mdsl3 |
|- ( ( ( A e. CH /\ B e. CH /\ D e. CH ) /\ ( A MH B /\ ( A i^i B ) C_ D /\ D C_ B ) ) -> ( ( D vH A ) i^i B ) = D ) |
| 38 |
36 37
|
mpan |
|- ( ( A MH B /\ ( A i^i B ) C_ D /\ D C_ B ) -> ( ( D vH A ) i^i B ) = D ) |
| 39 |
19 32 35 38
|
syl3an |
|- ( ( A MH B /\ ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) -> ( ( D vH A ) i^i B ) = D ) |
| 40 |
29 39
|
breq12d |
|- ( ( A MH B /\ ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) -> ( ( ( C vH A ) i^i B ) MH ( ( D vH A ) i^i B ) <-> C MH D ) ) |
| 41 |
40
|
3expb |
|- ( ( A MH B /\ ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) ) -> ( ( ( C vH A ) i^i B ) MH ( ( D vH A ) i^i B ) <-> C MH D ) ) |
| 42 |
41
|
adantlr |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) ) -> ( ( ( C vH A ) i^i B ) MH ( ( D vH A ) i^i B ) <-> C MH D ) ) |
| 43 |
18 42
|
bitr2d |
|- ( ( ( A MH B /\ B MH* A ) /\ ( ( A i^i B ) C_ ( C i^i D ) /\ ( C vH D ) C_ B ) ) -> ( C MH D <-> ( C vH A ) MH ( D vH A ) ) ) |