| Step | Hyp | Ref | Expression | 
						
							| 1 |  | merco2 |  |-  ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) | 
						
							| 2 |  | mercolem3 |  |-  ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( ( ph -> ch ) -> ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( th -> ps ) ) ) ) | 
						
							| 3 |  | mercolem6 |  |-  ( ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( ( ph -> ch ) -> ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( th -> ps ) ) ) ) -> ( ( ph -> ch ) -> ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( th -> ps ) ) ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( ( ph -> ch ) -> ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( th -> ps ) ) ) | 
						
							| 5 |  | mercolem5 |  |-  ( ph -> ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( th -> ps ) ) ) ) | 
						
							| 6 |  | mercolem4 |  |-  ( ( ph -> ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( th -> ps ) ) ) ) -> ( ( ( ph -> ch ) -> ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( th -> ps ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( th -> ps ) ) ) ) ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  ( ( ( ph -> ch ) -> ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( th -> ps ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( th -> ps ) ) ) ) ) | 
						
							| 8 | 4 7 | ax-mp |  |-  ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( th -> ps ) ) ) ) | 
						
							| 9 | 1 8 | ax-mp |  |-  ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ( th -> ps ) ) -> ( th -> ps ) ) ) |