Metamath Proof Explorer


Theorem mercolem8

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion mercolem8
|- ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) )

Proof

Step Hyp Ref Expression
1 merco2
 |-  ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) )
2 merco2
 |-  ( ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) )
3 mercolem3
 |-  ( ( ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) -> ( ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) )
4 2 3 ax-mp
 |-  ( ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) )
5 mercolem7
 |-  ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) )
6 mercolem7
 |-  ( ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) -> ( ( ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) -> ( ( F. -> ph ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) ) -> ( ( F. -> ph ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) ) )
7 5 6 ax-mp
 |-  ( ( ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) -> ( ( F. -> ph ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) ) -> ( ( F. -> ph ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) )
8 merco2
 |-  ( ( ( ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) -> ( ( F. -> ph ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) ) -> ( ( F. -> ph ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) ) -> ( ( ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) ) ) )
9 7 8 ax-mp
 |-  ( ( ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) ) )
10 4 9 ax-mp
 |-  ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) )
11 1 10 ax-mp
 |-  ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) )
12 1 11 ax-mp
 |-  ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) )