| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt31.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt31.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt31.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt31.4 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 5 |  | metakunt31.5 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 6 |  | metakunt31.6 |  |-  B = ( z e. ( 1 ... M ) |-> if ( z = M , M , if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) ) | 
						
							| 7 |  | metakunt31.7 |  |-  C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) | 
						
							| 8 |  | metakunt31.8 |  |-  G = if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) | 
						
							| 9 |  | metakunt31.9 |  |-  H = if ( I <_ ( X - I ) , 1 , 0 ) | 
						
							| 10 |  | metakunt31.10 |  |-  R = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) | 
						
							| 11 | 1 | adantr |  |-  ( ( ph /\ X = I ) -> M e. NN ) | 
						
							| 12 | 2 | adantr |  |-  ( ( ph /\ X = I ) -> I e. NN ) | 
						
							| 13 | 3 | adantr |  |-  ( ( ph /\ X = I ) -> I <_ M ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ X = I ) -> X = I ) | 
						
							| 15 | 11 12 13 5 7 6 14 | metakunt26 |  |-  ( ( ph /\ X = I ) -> ( C ` ( B ` ( A ` X ) ) ) = X ) | 
						
							| 16 | 14 | iftrued |  |-  ( ( ph /\ X = I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = X ) | 
						
							| 17 | 16 | eqcomd |  |-  ( ( ph /\ X = I ) -> X = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) | 
						
							| 18 | 15 17 | eqtrd |  |-  ( ( ph /\ X = I ) -> ( C ` ( B ` ( A ` X ) ) ) = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) | 
						
							| 19 | 10 | eqcomi |  |-  if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = R | 
						
							| 20 | 19 | a1i |  |-  ( ( ph /\ X = I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = R ) | 
						
							| 21 | 18 20 | eqtrd |  |-  ( ( ph /\ X = I ) -> ( C ` ( B ` ( A ` X ) ) ) = R ) | 
						
							| 22 | 1 | 3ad2ant1 |  |-  ( ( ph /\ -. X = I /\ X < I ) -> M e. NN ) | 
						
							| 23 | 2 | 3ad2ant1 |  |-  ( ( ph /\ -. X = I /\ X < I ) -> I e. NN ) | 
						
							| 24 | 3 | 3ad2ant1 |  |-  ( ( ph /\ -. X = I /\ X < I ) -> I <_ M ) | 
						
							| 25 | 4 | 3ad2ant1 |  |-  ( ( ph /\ -. X = I /\ X < I ) -> X e. ( 1 ... M ) ) | 
						
							| 26 |  | simp2 |  |-  ( ( ph /\ -. X = I /\ X < I ) -> -. X = I ) | 
						
							| 27 |  | simp3 |  |-  ( ( ph /\ -. X = I /\ X < I ) -> X < I ) | 
						
							| 28 | 22 23 24 25 5 6 26 27 7 8 | metakunt29 |  |-  ( ( ph /\ -. X = I /\ X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = ( ( X + ( M - I ) ) + G ) ) | 
						
							| 29 | 26 | iffalsed |  |-  ( ( ph /\ -. X = I /\ X < I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) | 
						
							| 30 | 27 | iftrued |  |-  ( ( ph /\ -. X = I /\ X < I ) -> if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) = ( ( X + ( M - I ) ) + G ) ) | 
						
							| 31 | 29 30 | eqtrd |  |-  ( ( ph /\ -. X = I /\ X < I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = ( ( X + ( M - I ) ) + G ) ) | 
						
							| 32 | 31 | eqcomd |  |-  ( ( ph /\ -. X = I /\ X < I ) -> ( ( X + ( M - I ) ) + G ) = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) | 
						
							| 33 | 28 32 | eqtrd |  |-  ( ( ph /\ -. X = I /\ X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) | 
						
							| 34 | 19 | a1i |  |-  ( ( ph /\ -. X = I /\ X < I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = R ) | 
						
							| 35 | 33 34 | eqtrd |  |-  ( ( ph /\ -. X = I /\ X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = R ) | 
						
							| 36 | 35 | 3expa |  |-  ( ( ( ph /\ -. X = I ) /\ X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = R ) | 
						
							| 37 | 1 | 3ad2ant1 |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> M e. NN ) | 
						
							| 38 | 2 | 3ad2ant1 |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> I e. NN ) | 
						
							| 39 | 3 | 3ad2ant1 |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> I <_ M ) | 
						
							| 40 | 4 | 3ad2ant1 |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> X e. ( 1 ... M ) ) | 
						
							| 41 |  | simp2 |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> -. X = I ) | 
						
							| 42 |  | simp3 |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> -. X < I ) | 
						
							| 43 | 37 38 39 40 5 6 41 42 7 9 | metakunt30 |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = ( ( X - I ) + H ) ) | 
						
							| 44 | 41 | iffalsed |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) | 
						
							| 45 | 42 | iffalsed |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) = ( ( X - I ) + H ) ) | 
						
							| 46 | 44 45 | eqtrd |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = ( ( X - I ) + H ) ) | 
						
							| 47 | 46 | eqcomd |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> ( ( X - I ) + H ) = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) | 
						
							| 48 | 43 47 | eqtrd |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) | 
						
							| 49 | 19 | a1i |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = R ) | 
						
							| 50 | 48 49 | eqtrd |  |-  ( ( ph /\ -. X = I /\ -. X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = R ) | 
						
							| 51 | 50 | 3expa |  |-  ( ( ( ph /\ -. X = I ) /\ -. X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = R ) | 
						
							| 52 | 36 51 | pm2.61dan |  |-  ( ( ph /\ -. X = I ) -> ( C ` ( B ` ( A ` X ) ) ) = R ) | 
						
							| 53 | 21 52 | pm2.61dan |  |-  ( ph -> ( C ` ( B ` ( A ` X ) ) ) = R ) |