Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt31.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt31.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt31.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt31.4 |
|- ( ph -> X e. ( 1 ... M ) ) |
5 |
|
metakunt31.5 |
|- A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) |
6 |
|
metakunt31.6 |
|- B = ( z e. ( 1 ... M ) |-> if ( z = M , M , if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) ) |
7 |
|
metakunt31.7 |
|- C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) |
8 |
|
metakunt31.8 |
|- G = if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) |
9 |
|
metakunt31.9 |
|- H = if ( I <_ ( X - I ) , 1 , 0 ) |
10 |
|
metakunt31.10 |
|- R = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) |
11 |
1
|
adantr |
|- ( ( ph /\ X = I ) -> M e. NN ) |
12 |
2
|
adantr |
|- ( ( ph /\ X = I ) -> I e. NN ) |
13 |
3
|
adantr |
|- ( ( ph /\ X = I ) -> I <_ M ) |
14 |
|
simpr |
|- ( ( ph /\ X = I ) -> X = I ) |
15 |
11 12 13 5 7 6 14
|
metakunt26 |
|- ( ( ph /\ X = I ) -> ( C ` ( B ` ( A ` X ) ) ) = X ) |
16 |
14
|
iftrued |
|- ( ( ph /\ X = I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = X ) |
17 |
16
|
eqcomd |
|- ( ( ph /\ X = I ) -> X = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) |
18 |
15 17
|
eqtrd |
|- ( ( ph /\ X = I ) -> ( C ` ( B ` ( A ` X ) ) ) = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) |
19 |
10
|
eqcomi |
|- if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = R |
20 |
19
|
a1i |
|- ( ( ph /\ X = I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = R ) |
21 |
18 20
|
eqtrd |
|- ( ( ph /\ X = I ) -> ( C ` ( B ` ( A ` X ) ) ) = R ) |
22 |
1
|
3ad2ant1 |
|- ( ( ph /\ -. X = I /\ X < I ) -> M e. NN ) |
23 |
2
|
3ad2ant1 |
|- ( ( ph /\ -. X = I /\ X < I ) -> I e. NN ) |
24 |
3
|
3ad2ant1 |
|- ( ( ph /\ -. X = I /\ X < I ) -> I <_ M ) |
25 |
4
|
3ad2ant1 |
|- ( ( ph /\ -. X = I /\ X < I ) -> X e. ( 1 ... M ) ) |
26 |
|
simp2 |
|- ( ( ph /\ -. X = I /\ X < I ) -> -. X = I ) |
27 |
|
simp3 |
|- ( ( ph /\ -. X = I /\ X < I ) -> X < I ) |
28 |
22 23 24 25 5 6 26 27 7 8
|
metakunt29 |
|- ( ( ph /\ -. X = I /\ X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = ( ( X + ( M - I ) ) + G ) ) |
29 |
26
|
iffalsed |
|- ( ( ph /\ -. X = I /\ X < I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) |
30 |
27
|
iftrued |
|- ( ( ph /\ -. X = I /\ X < I ) -> if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) = ( ( X + ( M - I ) ) + G ) ) |
31 |
29 30
|
eqtrd |
|- ( ( ph /\ -. X = I /\ X < I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = ( ( X + ( M - I ) ) + G ) ) |
32 |
31
|
eqcomd |
|- ( ( ph /\ -. X = I /\ X < I ) -> ( ( X + ( M - I ) ) + G ) = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) |
33 |
28 32
|
eqtrd |
|- ( ( ph /\ -. X = I /\ X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) |
34 |
19
|
a1i |
|- ( ( ph /\ -. X = I /\ X < I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = R ) |
35 |
33 34
|
eqtrd |
|- ( ( ph /\ -. X = I /\ X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = R ) |
36 |
35
|
3expa |
|- ( ( ( ph /\ -. X = I ) /\ X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = R ) |
37 |
1
|
3ad2ant1 |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> M e. NN ) |
38 |
2
|
3ad2ant1 |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> I e. NN ) |
39 |
3
|
3ad2ant1 |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> I <_ M ) |
40 |
4
|
3ad2ant1 |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> X e. ( 1 ... M ) ) |
41 |
|
simp2 |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> -. X = I ) |
42 |
|
simp3 |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> -. X < I ) |
43 |
37 38 39 40 5 6 41 42 7 9
|
metakunt30 |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = ( ( X - I ) + H ) ) |
44 |
41
|
iffalsed |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) |
45 |
42
|
iffalsed |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) = ( ( X - I ) + H ) ) |
46 |
44 45
|
eqtrd |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = ( ( X - I ) + H ) ) |
47 |
46
|
eqcomd |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> ( ( X - I ) + H ) = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) |
48 |
43 47
|
eqtrd |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) |
49 |
19
|
a1i |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = R ) |
50 |
48 49
|
eqtrd |
|- ( ( ph /\ -. X = I /\ -. X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = R ) |
51 |
50
|
3expa |
|- ( ( ( ph /\ -. X = I ) /\ -. X < I ) -> ( C ` ( B ` ( A ` X ) ) ) = R ) |
52 |
36 51
|
pm2.61dan |
|- ( ( ph /\ -. X = I ) -> ( C ` ( B ` ( A ` X ) ) ) = R ) |
53 |
21 52
|
pm2.61dan |
|- ( ph -> ( C ` ( B ` ( A ` X ) ) ) = R ) |