| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt30.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt30.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt30.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt30.4 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 5 |  | metakunt30.5 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 6 |  | metakunt30.6 |  |-  B = ( z e. ( 1 ... M ) |-> if ( z = M , M , if ( z < I , ( z + ( M - I ) ) , ( z + ( 1 - I ) ) ) ) ) | 
						
							| 7 |  | metakunt30.7 |  |-  ( ph -> -. X = I ) | 
						
							| 8 |  | metakunt30.8 |  |-  ( ph -> -. X < I ) | 
						
							| 9 |  | metakunt30.9 |  |-  C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) | 
						
							| 10 |  | metakunt30.10 |  |-  H = if ( I <_ ( X - I ) , 1 , 0 ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | metakunt28 |  |-  ( ph -> ( B ` ( A ` X ) ) = ( X - I ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ph -> ( C ` ( B ` ( A ` X ) ) ) = ( C ` ( X - I ) ) ) | 
						
							| 13 | 9 | a1i |  |-  ( ph -> C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) ) | 
						
							| 14 |  | elfznn |  |-  ( X e. ( 1 ... M ) -> X e. NN ) | 
						
							| 15 | 4 14 | syl |  |-  ( ph -> X e. NN ) | 
						
							| 16 |  | nnre |  |-  ( X e. NN -> X e. RR ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> X e. RR ) | 
						
							| 18 | 2 | nnred |  |-  ( ph -> I e. RR ) | 
						
							| 19 | 17 18 | resubcld |  |-  ( ph -> ( X - I ) e. RR ) | 
						
							| 20 | 1 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 21 | 20 18 | resubcld |  |-  ( ph -> ( M - I ) e. RR ) | 
						
							| 22 |  | elfzle2 |  |-  ( X e. ( 1 ... M ) -> X <_ M ) | 
						
							| 23 | 4 22 | syl |  |-  ( ph -> X <_ M ) | 
						
							| 24 | 17 20 18 23 | lesub1dd |  |-  ( ph -> ( X - I ) <_ ( M - I ) ) | 
						
							| 25 | 2 | nnrpd |  |-  ( ph -> I e. RR+ ) | 
						
							| 26 | 20 25 | ltsubrpd |  |-  ( ph -> ( M - I ) < M ) | 
						
							| 27 | 19 21 20 24 26 | lelttrd |  |-  ( ph -> ( X - I ) < M ) | 
						
							| 28 | 19 27 | ltned |  |-  ( ph -> ( X - I ) =/= M ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ y = ( X - I ) ) -> ( X - I ) =/= M ) | 
						
							| 30 |  | neeq1 |  |-  ( y = ( X - I ) -> ( y =/= M <-> ( X - I ) =/= M ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ph /\ y = ( X - I ) ) -> ( y =/= M <-> ( X - I ) =/= M ) ) | 
						
							| 32 | 29 31 | mpbird |  |-  ( ( ph /\ y = ( X - I ) ) -> y =/= M ) | 
						
							| 33 | 32 | neneqd |  |-  ( ( ph /\ y = ( X - I ) ) -> -. y = M ) | 
						
							| 34 | 33 | iffalsed |  |-  ( ( ph /\ y = ( X - I ) ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( y < I , y , ( y + 1 ) ) ) | 
						
							| 35 | 18 19 | lenltd |  |-  ( ph -> ( I <_ ( X - I ) <-> -. ( X - I ) < I ) ) | 
						
							| 36 | 35 | biimpa |  |-  ( ( ph /\ I <_ ( X - I ) ) -> -. ( X - I ) < I ) | 
						
							| 37 | 36 | 3adant2 |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> -. ( X - I ) < I ) | 
						
							| 38 |  | breq1 |  |-  ( y = ( X - I ) -> ( y < I <-> ( X - I ) < I ) ) | 
						
							| 39 | 38 | 3ad2ant2 |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> ( y < I <-> ( X - I ) < I ) ) | 
						
							| 40 | 37 39 | mtbird |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> -. y < I ) | 
						
							| 41 | 40 | iffalsed |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> if ( y < I , y , ( y + 1 ) ) = ( y + 1 ) ) | 
						
							| 42 |  | simp2 |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> y = ( X - I ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> ( y + 1 ) = ( ( X - I ) + 1 ) ) | 
						
							| 44 |  | simp3 |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> I <_ ( X - I ) ) | 
						
							| 45 | 44 | iftrued |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> if ( I <_ ( X - I ) , 1 , 0 ) = 1 ) | 
						
							| 46 | 45 | eqcomd |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> 1 = if ( I <_ ( X - I ) , 1 , 0 ) ) | 
						
							| 47 | 10 | a1i |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> H = if ( I <_ ( X - I ) , 1 , 0 ) ) | 
						
							| 48 | 47 | eqcomd |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> if ( I <_ ( X - I ) , 1 , 0 ) = H ) | 
						
							| 49 | 46 48 | eqtrd |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> 1 = H ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> ( ( X - I ) + 1 ) = ( ( X - I ) + H ) ) | 
						
							| 51 | 43 50 | eqtrd |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> ( y + 1 ) = ( ( X - I ) + H ) ) | 
						
							| 52 | 41 51 | eqtrd |  |-  ( ( ph /\ y = ( X - I ) /\ I <_ ( X - I ) ) -> if ( y < I , y , ( y + 1 ) ) = ( ( X - I ) + H ) ) | 
						
							| 53 | 52 | 3expa |  |-  ( ( ( ph /\ y = ( X - I ) ) /\ I <_ ( X - I ) ) -> if ( y < I , y , ( y + 1 ) ) = ( ( X - I ) + H ) ) | 
						
							| 54 |  | simpr |  |-  ( ( ph /\ -. I <_ ( X - I ) ) -> -. I <_ ( X - I ) ) | 
						
							| 55 | 19 | adantr |  |-  ( ( ph /\ -. I <_ ( X - I ) ) -> ( X - I ) e. RR ) | 
						
							| 56 | 18 | adantr |  |-  ( ( ph /\ -. I <_ ( X - I ) ) -> I e. RR ) | 
						
							| 57 | 55 56 | ltnled |  |-  ( ( ph /\ -. I <_ ( X - I ) ) -> ( ( X - I ) < I <-> -. I <_ ( X - I ) ) ) | 
						
							| 58 | 54 57 | mpbird |  |-  ( ( ph /\ -. I <_ ( X - I ) ) -> ( X - I ) < I ) | 
						
							| 59 | 58 | 3adant2 |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> ( X - I ) < I ) | 
						
							| 60 | 38 | 3ad2ant2 |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> ( y < I <-> ( X - I ) < I ) ) | 
						
							| 61 | 59 60 | mpbird |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> y < I ) | 
						
							| 62 | 61 | iftrued |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> if ( y < I , y , ( y + 1 ) ) = y ) | 
						
							| 63 |  | simp2 |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> y = ( X - I ) ) | 
						
							| 64 |  | nncn |  |-  ( X e. NN -> X e. CC ) | 
						
							| 65 | 15 64 | syl |  |-  ( ph -> X e. CC ) | 
						
							| 66 | 65 | 3ad2ant1 |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> X e. CC ) | 
						
							| 67 | 2 | nncnd |  |-  ( ph -> I e. CC ) | 
						
							| 68 | 67 | 3ad2ant1 |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> I e. CC ) | 
						
							| 69 | 66 68 | subcld |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> ( X - I ) e. CC ) | 
						
							| 70 | 69 | addridd |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> ( ( X - I ) + 0 ) = ( X - I ) ) | 
						
							| 71 | 70 | eqcomd |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> ( X - I ) = ( ( X - I ) + 0 ) ) | 
						
							| 72 | 10 | a1i |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> H = if ( I <_ ( X - I ) , 1 , 0 ) ) | 
						
							| 73 |  | simp3 |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> -. I <_ ( X - I ) ) | 
						
							| 74 | 73 | iffalsed |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> if ( I <_ ( X - I ) , 1 , 0 ) = 0 ) | 
						
							| 75 | 72 74 | eqtrd |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> H = 0 ) | 
						
							| 76 | 75 | eqcomd |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> 0 = H ) | 
						
							| 77 | 76 | oveq2d |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> ( ( X - I ) + 0 ) = ( ( X - I ) + H ) ) | 
						
							| 78 | 71 77 | eqtrd |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> ( X - I ) = ( ( X - I ) + H ) ) | 
						
							| 79 | 63 78 | eqtrd |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> y = ( ( X - I ) + H ) ) | 
						
							| 80 | 62 79 | eqtrd |  |-  ( ( ph /\ y = ( X - I ) /\ -. I <_ ( X - I ) ) -> if ( y < I , y , ( y + 1 ) ) = ( ( X - I ) + H ) ) | 
						
							| 81 | 80 | 3expa |  |-  ( ( ( ph /\ y = ( X - I ) ) /\ -. I <_ ( X - I ) ) -> if ( y < I , y , ( y + 1 ) ) = ( ( X - I ) + H ) ) | 
						
							| 82 | 53 81 | pm2.61dan |  |-  ( ( ph /\ y = ( X - I ) ) -> if ( y < I , y , ( y + 1 ) ) = ( ( X - I ) + H ) ) | 
						
							| 83 | 34 82 | eqtrd |  |-  ( ( ph /\ y = ( X - I ) ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = ( ( X - I ) + H ) ) | 
						
							| 84 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 85 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 86 | 15 | nnzd |  |-  ( ph -> X e. ZZ ) | 
						
							| 87 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 88 | 86 87 | zsubcld |  |-  ( ph -> ( X - I ) e. ZZ ) | 
						
							| 89 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 90 | 18 17 8 | nltled |  |-  ( ph -> I <_ X ) | 
						
							| 91 | 7 | neqned |  |-  ( ph -> X =/= I ) | 
						
							| 92 | 90 91 | jca |  |-  ( ph -> ( I <_ X /\ X =/= I ) ) | 
						
							| 93 | 18 17 | ltlend |  |-  ( ph -> ( I < X <-> ( I <_ X /\ X =/= I ) ) ) | 
						
							| 94 | 92 93 | mpbird |  |-  ( ph -> I < X ) | 
						
							| 95 | 18 17 | posdifd |  |-  ( ph -> ( I < X <-> 0 < ( X - I ) ) ) | 
						
							| 96 | 94 95 | mpbid |  |-  ( ph -> 0 < ( X - I ) ) | 
						
							| 97 | 89 96 | eqbrtrid |  |-  ( ph -> ( 1 - 1 ) < ( X - I ) ) | 
						
							| 98 |  | zlem1lt |  |-  ( ( 1 e. ZZ /\ ( X - I ) e. ZZ ) -> ( 1 <_ ( X - I ) <-> ( 1 - 1 ) < ( X - I ) ) ) | 
						
							| 99 | 84 88 98 | syl2anc |  |-  ( ph -> ( 1 <_ ( X - I ) <-> ( 1 - 1 ) < ( X - I ) ) ) | 
						
							| 100 | 97 99 | mpbird |  |-  ( ph -> 1 <_ ( X - I ) ) | 
						
							| 101 | 19 20 27 | ltled |  |-  ( ph -> ( X - I ) <_ M ) | 
						
							| 102 | 84 85 88 100 101 | elfzd |  |-  ( ph -> ( X - I ) e. ( 1 ... M ) ) | 
						
							| 103 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 104 | 84 103 | ifcld |  |-  ( ph -> if ( I <_ ( X - I ) , 1 , 0 ) e. ZZ ) | 
						
							| 105 | 10 | a1i |  |-  ( ph -> H = if ( I <_ ( X - I ) , 1 , 0 ) ) | 
						
							| 106 | 105 | eleq1d |  |-  ( ph -> ( H e. ZZ <-> if ( I <_ ( X - I ) , 1 , 0 ) e. ZZ ) ) | 
						
							| 107 | 104 106 | mpbird |  |-  ( ph -> H e. ZZ ) | 
						
							| 108 | 88 107 | zaddcld |  |-  ( ph -> ( ( X - I ) + H ) e. ZZ ) | 
						
							| 109 | 13 83 102 108 | fvmptd |  |-  ( ph -> ( C ` ( X - I ) ) = ( ( X - I ) + H ) ) | 
						
							| 110 | 12 109 | eqtrd |  |-  ( ph -> ( C ` ( B ` ( A ` X ) ) ) = ( ( X - I ) + H ) ) |