| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt30.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt30.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt30.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt30.4 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 5 |  | metakunt30.5 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 6 |  | metakunt30.6 | ⊢ 𝐵  =  ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝑀 ,  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 7 |  | metakunt30.7 | ⊢ ( 𝜑  →  ¬  𝑋  =  𝐼 ) | 
						
							| 8 |  | metakunt30.8 | ⊢ ( 𝜑  →  ¬  𝑋  <  𝐼 ) | 
						
							| 9 |  | metakunt30.9 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 10 |  | metakunt30.10 | ⊢ 𝐻  =  if ( 𝐼  ≤  ( 𝑋  −  𝐼 ) ,  1 ,  0 ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | metakunt28 | ⊢ ( 𝜑  →  ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) )  =  ( 𝑋  −  𝐼 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) )  =  ( 𝐶 ‘ ( 𝑋  −  𝐼 ) ) ) | 
						
							| 13 | 9 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 14 |  | elfznn | ⊢ ( 𝑋  ∈  ( 1 ... 𝑀 )  →  𝑋  ∈  ℕ ) | 
						
							| 15 | 4 14 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℕ ) | 
						
							| 16 |  | nnre | ⊢ ( 𝑋  ∈  ℕ  →  𝑋  ∈  ℝ ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 18 | 2 | nnred | ⊢ ( 𝜑  →  𝐼  ∈  ℝ ) | 
						
							| 19 | 17 18 | resubcld | ⊢ ( 𝜑  →  ( 𝑋  −  𝐼 )  ∈  ℝ ) | 
						
							| 20 | 1 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 21 | 20 18 | resubcld | ⊢ ( 𝜑  →  ( 𝑀  −  𝐼 )  ∈  ℝ ) | 
						
							| 22 |  | elfzle2 | ⊢ ( 𝑋  ∈  ( 1 ... 𝑀 )  →  𝑋  ≤  𝑀 ) | 
						
							| 23 | 4 22 | syl | ⊢ ( 𝜑  →  𝑋  ≤  𝑀 ) | 
						
							| 24 | 17 20 18 23 | lesub1dd | ⊢ ( 𝜑  →  ( 𝑋  −  𝐼 )  ≤  ( 𝑀  −  𝐼 ) ) | 
						
							| 25 | 2 | nnrpd | ⊢ ( 𝜑  →  𝐼  ∈  ℝ+ ) | 
						
							| 26 | 20 25 | ltsubrpd | ⊢ ( 𝜑  →  ( 𝑀  −  𝐼 )  <  𝑀 ) | 
						
							| 27 | 19 21 20 24 26 | lelttrd | ⊢ ( 𝜑  →  ( 𝑋  −  𝐼 )  <  𝑀 ) | 
						
							| 28 | 19 27 | ltned | ⊢ ( 𝜑  →  ( 𝑋  −  𝐼 )  ≠  𝑀 ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 ) )  →  ( 𝑋  −  𝐼 )  ≠  𝑀 ) | 
						
							| 30 |  | neeq1 | ⊢ ( 𝑦  =  ( 𝑋  −  𝐼 )  →  ( 𝑦  ≠  𝑀  ↔  ( 𝑋  −  𝐼 )  ≠  𝑀 ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 ) )  →  ( 𝑦  ≠  𝑀  ↔  ( 𝑋  −  𝐼 )  ≠  𝑀 ) ) | 
						
							| 32 | 29 31 | mpbird | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 ) )  →  𝑦  ≠  𝑀 ) | 
						
							| 33 | 32 | neneqd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 ) )  →  ¬  𝑦  =  𝑀 ) | 
						
							| 34 | 33 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 ) )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) | 
						
							| 35 | 18 19 | lenltd | ⊢ ( 𝜑  →  ( 𝐼  ≤  ( 𝑋  −  𝐼 )  ↔  ¬  ( 𝑋  −  𝐼 )  <  𝐼 ) ) | 
						
							| 36 | 35 | biimpa | ⊢ ( ( 𝜑  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ¬  ( 𝑋  −  𝐼 )  <  𝐼 ) | 
						
							| 37 | 36 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ¬  ( 𝑋  −  𝐼 )  <  𝐼 ) | 
						
							| 38 |  | breq1 | ⊢ ( 𝑦  =  ( 𝑋  −  𝐼 )  →  ( 𝑦  <  𝐼  ↔  ( 𝑋  −  𝐼 )  <  𝐼 ) ) | 
						
							| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( 𝑦  <  𝐼  ↔  ( 𝑋  −  𝐼 )  <  𝐼 ) ) | 
						
							| 40 | 37 39 | mtbird | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ¬  𝑦  <  𝐼 ) | 
						
							| 41 | 40 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( 𝑦  +  1 ) ) | 
						
							| 42 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  𝑦  =  ( 𝑋  −  𝐼 ) ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( 𝑦  +  1 )  =  ( ( 𝑋  −  𝐼 )  +  1 ) ) | 
						
							| 44 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  𝐼  ≤  ( 𝑋  −  𝐼 ) ) | 
						
							| 45 | 44 | iftrued | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  if ( 𝐼  ≤  ( 𝑋  −  𝐼 ) ,  1 ,  0 )  =  1 ) | 
						
							| 46 | 45 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  1  =  if ( 𝐼  ≤  ( 𝑋  −  𝐼 ) ,  1 ,  0 ) ) | 
						
							| 47 | 10 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  𝐻  =  if ( 𝐼  ≤  ( 𝑋  −  𝐼 ) ,  1 ,  0 ) ) | 
						
							| 48 | 47 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  if ( 𝐼  ≤  ( 𝑋  −  𝐼 ) ,  1 ,  0 )  =  𝐻 ) | 
						
							| 49 | 46 48 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  1  =  𝐻 ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( ( 𝑋  −  𝐼 )  +  1 )  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) | 
						
							| 51 | 43 50 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( 𝑦  +  1 )  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) | 
						
							| 52 | 41 51 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) | 
						
							| 53 | 52 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) | 
						
							| 54 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) ) | 
						
							| 55 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( 𝑋  −  𝐼 )  ∈  ℝ ) | 
						
							| 56 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  𝐼  ∈  ℝ ) | 
						
							| 57 | 55 56 | ltnled | ⊢ ( ( 𝜑  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( ( 𝑋  −  𝐼 )  <  𝐼  ↔  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) ) ) | 
						
							| 58 | 54 57 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( 𝑋  −  𝐼 )  <  𝐼 ) | 
						
							| 59 | 58 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( 𝑋  −  𝐼 )  <  𝐼 ) | 
						
							| 60 | 38 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( 𝑦  <  𝐼  ↔  ( 𝑋  −  𝐼 )  <  𝐼 ) ) | 
						
							| 61 | 59 60 | mpbird | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  𝑦  <  𝐼 ) | 
						
							| 62 | 61 | iftrued | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  𝑦 ) | 
						
							| 63 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  𝑦  =  ( 𝑋  −  𝐼 ) ) | 
						
							| 64 |  | nncn | ⊢ ( 𝑋  ∈  ℕ  →  𝑋  ∈  ℂ ) | 
						
							| 65 | 15 64 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 66 | 65 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  𝑋  ∈  ℂ ) | 
						
							| 67 | 2 | nncnd | ⊢ ( 𝜑  →  𝐼  ∈  ℂ ) | 
						
							| 68 | 67 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  𝐼  ∈  ℂ ) | 
						
							| 69 | 66 68 | subcld | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( 𝑋  −  𝐼 )  ∈  ℂ ) | 
						
							| 70 | 69 | addridd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( ( 𝑋  −  𝐼 )  +  0 )  =  ( 𝑋  −  𝐼 ) ) | 
						
							| 71 | 70 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( 𝑋  −  𝐼 )  =  ( ( 𝑋  −  𝐼 )  +  0 ) ) | 
						
							| 72 | 10 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  𝐻  =  if ( 𝐼  ≤  ( 𝑋  −  𝐼 ) ,  1 ,  0 ) ) | 
						
							| 73 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) ) | 
						
							| 74 | 73 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  if ( 𝐼  ≤  ( 𝑋  −  𝐼 ) ,  1 ,  0 )  =  0 ) | 
						
							| 75 | 72 74 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  𝐻  =  0 ) | 
						
							| 76 | 75 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  0  =  𝐻 ) | 
						
							| 77 | 76 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( ( 𝑋  −  𝐼 )  +  0 )  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) | 
						
							| 78 | 71 77 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  ( 𝑋  −  𝐼 )  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) | 
						
							| 79 | 63 78 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  𝑦  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) | 
						
							| 80 | 62 79 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) | 
						
							| 81 | 80 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 ) )  ∧  ¬  𝐼  ≤  ( 𝑋  −  𝐼 ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) | 
						
							| 82 | 53 81 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) | 
						
							| 83 | 34 82 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  −  𝐼 ) )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) | 
						
							| 84 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 85 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 86 | 15 | nnzd | ⊢ ( 𝜑  →  𝑋  ∈  ℤ ) | 
						
							| 87 | 2 | nnzd | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 88 | 86 87 | zsubcld | ⊢ ( 𝜑  →  ( 𝑋  −  𝐼 )  ∈  ℤ ) | 
						
							| 89 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 90 | 18 17 8 | nltled | ⊢ ( 𝜑  →  𝐼  ≤  𝑋 ) | 
						
							| 91 | 7 | neqned | ⊢ ( 𝜑  →  𝑋  ≠  𝐼 ) | 
						
							| 92 | 90 91 | jca | ⊢ ( 𝜑  →  ( 𝐼  ≤  𝑋  ∧  𝑋  ≠  𝐼 ) ) | 
						
							| 93 | 18 17 | ltlend | ⊢ ( 𝜑  →  ( 𝐼  <  𝑋  ↔  ( 𝐼  ≤  𝑋  ∧  𝑋  ≠  𝐼 ) ) ) | 
						
							| 94 | 92 93 | mpbird | ⊢ ( 𝜑  →  𝐼  <  𝑋 ) | 
						
							| 95 | 18 17 | posdifd | ⊢ ( 𝜑  →  ( 𝐼  <  𝑋  ↔  0  <  ( 𝑋  −  𝐼 ) ) ) | 
						
							| 96 | 94 95 | mpbid | ⊢ ( 𝜑  →  0  <  ( 𝑋  −  𝐼 ) ) | 
						
							| 97 | 89 96 | eqbrtrid | ⊢ ( 𝜑  →  ( 1  −  1 )  <  ( 𝑋  −  𝐼 ) ) | 
						
							| 98 |  | zlem1lt | ⊢ ( ( 1  ∈  ℤ  ∧  ( 𝑋  −  𝐼 )  ∈  ℤ )  →  ( 1  ≤  ( 𝑋  −  𝐼 )  ↔  ( 1  −  1 )  <  ( 𝑋  −  𝐼 ) ) ) | 
						
							| 99 | 84 88 98 | syl2anc | ⊢ ( 𝜑  →  ( 1  ≤  ( 𝑋  −  𝐼 )  ↔  ( 1  −  1 )  <  ( 𝑋  −  𝐼 ) ) ) | 
						
							| 100 | 97 99 | mpbird | ⊢ ( 𝜑  →  1  ≤  ( 𝑋  −  𝐼 ) ) | 
						
							| 101 | 19 20 27 | ltled | ⊢ ( 𝜑  →  ( 𝑋  −  𝐼 )  ≤  𝑀 ) | 
						
							| 102 | 84 85 88 100 101 | elfzd | ⊢ ( 𝜑  →  ( 𝑋  −  𝐼 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 103 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 104 | 84 103 | ifcld | ⊢ ( 𝜑  →  if ( 𝐼  ≤  ( 𝑋  −  𝐼 ) ,  1 ,  0 )  ∈  ℤ ) | 
						
							| 105 | 10 | a1i | ⊢ ( 𝜑  →  𝐻  =  if ( 𝐼  ≤  ( 𝑋  −  𝐼 ) ,  1 ,  0 ) ) | 
						
							| 106 | 105 | eleq1d | ⊢ ( 𝜑  →  ( 𝐻  ∈  ℤ  ↔  if ( 𝐼  ≤  ( 𝑋  −  𝐼 ) ,  1 ,  0 )  ∈  ℤ ) ) | 
						
							| 107 | 104 106 | mpbird | ⊢ ( 𝜑  →  𝐻  ∈  ℤ ) | 
						
							| 108 | 88 107 | zaddcld | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝐼 )  +  𝐻 )  ∈  ℤ ) | 
						
							| 109 | 13 83 102 108 | fvmptd | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝑋  −  𝐼 ) )  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) | 
						
							| 110 | 12 109 | eqtrd | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) )  =  ( ( 𝑋  −  𝐼 )  +  𝐻 ) ) |