Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt30.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
metakunt30.2 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
3 |
|
metakunt30.3 |
⊢ ( 𝜑 → 𝐼 ≤ 𝑀 ) |
4 |
|
metakunt30.4 |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
5 |
|
metakunt30.5 |
⊢ 𝐴 = ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) |
6 |
|
metakunt30.6 |
⊢ 𝐵 = ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝑀 , if ( 𝑧 < 𝐼 , ( 𝑧 + ( 𝑀 − 𝐼 ) ) , ( 𝑧 + ( 1 − 𝐼 ) ) ) ) ) |
7 |
|
metakunt30.7 |
⊢ ( 𝜑 → ¬ 𝑋 = 𝐼 ) |
8 |
|
metakunt30.8 |
⊢ ( 𝜑 → ¬ 𝑋 < 𝐼 ) |
9 |
|
metakunt30.9 |
⊢ 𝐶 = ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) ) |
10 |
|
metakunt30.10 |
⊢ 𝐻 = if ( 𝐼 ≤ ( 𝑋 − 𝐼 ) , 1 , 0 ) |
11 |
1 2 3 4 5 6 7 8
|
metakunt28 |
⊢ ( 𝜑 → ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝑋 − 𝐼 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = ( 𝐶 ‘ ( 𝑋 − 𝐼 ) ) ) |
13 |
9
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) ) ) |
14 |
|
elfznn |
⊢ ( 𝑋 ∈ ( 1 ... 𝑀 ) → 𝑋 ∈ ℕ ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ℕ ) |
16 |
|
nnre |
⊢ ( 𝑋 ∈ ℕ → 𝑋 ∈ ℝ ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
18 |
2
|
nnred |
⊢ ( 𝜑 → 𝐼 ∈ ℝ ) |
19 |
17 18
|
resubcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐼 ) ∈ ℝ ) |
20 |
1
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
21 |
20 18
|
resubcld |
⊢ ( 𝜑 → ( 𝑀 − 𝐼 ) ∈ ℝ ) |
22 |
|
elfzle2 |
⊢ ( 𝑋 ∈ ( 1 ... 𝑀 ) → 𝑋 ≤ 𝑀 ) |
23 |
4 22
|
syl |
⊢ ( 𝜑 → 𝑋 ≤ 𝑀 ) |
24 |
17 20 18 23
|
lesub1dd |
⊢ ( 𝜑 → ( 𝑋 − 𝐼 ) ≤ ( 𝑀 − 𝐼 ) ) |
25 |
2
|
nnrpd |
⊢ ( 𝜑 → 𝐼 ∈ ℝ+ ) |
26 |
20 25
|
ltsubrpd |
⊢ ( 𝜑 → ( 𝑀 − 𝐼 ) < 𝑀 ) |
27 |
19 21 20 24 26
|
lelttrd |
⊢ ( 𝜑 → ( 𝑋 − 𝐼 ) < 𝑀 ) |
28 |
19 27
|
ltned |
⊢ ( 𝜑 → ( 𝑋 − 𝐼 ) ≠ 𝑀 ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ) → ( 𝑋 − 𝐼 ) ≠ 𝑀 ) |
30 |
|
neeq1 |
⊢ ( 𝑦 = ( 𝑋 − 𝐼 ) → ( 𝑦 ≠ 𝑀 ↔ ( 𝑋 − 𝐼 ) ≠ 𝑀 ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ) → ( 𝑦 ≠ 𝑀 ↔ ( 𝑋 − 𝐼 ) ≠ 𝑀 ) ) |
32 |
29 31
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ) → 𝑦 ≠ 𝑀 ) |
33 |
32
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ) → ¬ 𝑦 = 𝑀 ) |
34 |
33
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ) → if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) = if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) |
35 |
18 19
|
lenltd |
⊢ ( 𝜑 → ( 𝐼 ≤ ( 𝑋 − 𝐼 ) ↔ ¬ ( 𝑋 − 𝐼 ) < 𝐼 ) ) |
36 |
35
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ¬ ( 𝑋 − 𝐼 ) < 𝐼 ) |
37 |
36
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ¬ ( 𝑋 − 𝐼 ) < 𝐼 ) |
38 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑋 − 𝐼 ) → ( 𝑦 < 𝐼 ↔ ( 𝑋 − 𝐼 ) < 𝐼 ) ) |
39 |
38
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( 𝑦 < 𝐼 ↔ ( 𝑋 − 𝐼 ) < 𝐼 ) ) |
40 |
37 39
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ¬ 𝑦 < 𝐼 ) |
41 |
40
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑦 + 1 ) ) |
42 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 𝑦 = ( 𝑋 − 𝐼 ) ) |
43 |
42
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( 𝑦 + 1 ) = ( ( 𝑋 − 𝐼 ) + 1 ) ) |
44 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 𝐼 ≤ ( 𝑋 − 𝐼 ) ) |
45 |
44
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → if ( 𝐼 ≤ ( 𝑋 − 𝐼 ) , 1 , 0 ) = 1 ) |
46 |
45
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 1 = if ( 𝐼 ≤ ( 𝑋 − 𝐼 ) , 1 , 0 ) ) |
47 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 𝐻 = if ( 𝐼 ≤ ( 𝑋 − 𝐼 ) , 1 , 0 ) ) |
48 |
47
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → if ( 𝐼 ≤ ( 𝑋 − 𝐼 ) , 1 , 0 ) = 𝐻 ) |
49 |
46 48
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 1 = 𝐻 ) |
50 |
49
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( ( 𝑋 − 𝐼 ) + 1 ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
51 |
43 50
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( 𝑦 + 1 ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
52 |
41 51
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
53 |
52
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ) ∧ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
54 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) |
55 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( 𝑋 − 𝐼 ) ∈ ℝ ) |
56 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 𝐼 ∈ ℝ ) |
57 |
55 56
|
ltnled |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( ( 𝑋 − 𝐼 ) < 𝐼 ↔ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) ) |
58 |
54 57
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( 𝑋 − 𝐼 ) < 𝐼 ) |
59 |
58
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( 𝑋 − 𝐼 ) < 𝐼 ) |
60 |
38
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( 𝑦 < 𝐼 ↔ ( 𝑋 − 𝐼 ) < 𝐼 ) ) |
61 |
59 60
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 𝑦 < 𝐼 ) |
62 |
61
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) = 𝑦 ) |
63 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 𝑦 = ( 𝑋 − 𝐼 ) ) |
64 |
|
nncn |
⊢ ( 𝑋 ∈ ℕ → 𝑋 ∈ ℂ ) |
65 |
15 64
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
66 |
65
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 𝑋 ∈ ℂ ) |
67 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐼 ∈ ℂ ) |
68 |
67
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 𝐼 ∈ ℂ ) |
69 |
66 68
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( 𝑋 − 𝐼 ) ∈ ℂ ) |
70 |
69
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( ( 𝑋 − 𝐼 ) + 0 ) = ( 𝑋 − 𝐼 ) ) |
71 |
70
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( 𝑋 − 𝐼 ) = ( ( 𝑋 − 𝐼 ) + 0 ) ) |
72 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 𝐻 = if ( 𝐼 ≤ ( 𝑋 − 𝐼 ) , 1 , 0 ) ) |
73 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) |
74 |
73
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → if ( 𝐼 ≤ ( 𝑋 − 𝐼 ) , 1 , 0 ) = 0 ) |
75 |
72 74
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 𝐻 = 0 ) |
76 |
75
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 0 = 𝐻 ) |
77 |
76
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( ( 𝑋 − 𝐼 ) + 0 ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
78 |
71 77
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → ( 𝑋 − 𝐼 ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
79 |
63 78
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → 𝑦 = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
80 |
62 79
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
81 |
80
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ) ∧ ¬ 𝐼 ≤ ( 𝑋 − 𝐼 ) ) → if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
82 |
53 81
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ) → if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
83 |
34 82
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑋 − 𝐼 ) ) → if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
84 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
85 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
86 |
15
|
nnzd |
⊢ ( 𝜑 → 𝑋 ∈ ℤ ) |
87 |
2
|
nnzd |
⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
88 |
86 87
|
zsubcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐼 ) ∈ ℤ ) |
89 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
90 |
18 17 8
|
nltled |
⊢ ( 𝜑 → 𝐼 ≤ 𝑋 ) |
91 |
7
|
neqned |
⊢ ( 𝜑 → 𝑋 ≠ 𝐼 ) |
92 |
90 91
|
jca |
⊢ ( 𝜑 → ( 𝐼 ≤ 𝑋 ∧ 𝑋 ≠ 𝐼 ) ) |
93 |
18 17
|
ltlend |
⊢ ( 𝜑 → ( 𝐼 < 𝑋 ↔ ( 𝐼 ≤ 𝑋 ∧ 𝑋 ≠ 𝐼 ) ) ) |
94 |
92 93
|
mpbird |
⊢ ( 𝜑 → 𝐼 < 𝑋 ) |
95 |
18 17
|
posdifd |
⊢ ( 𝜑 → ( 𝐼 < 𝑋 ↔ 0 < ( 𝑋 − 𝐼 ) ) ) |
96 |
94 95
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝑋 − 𝐼 ) ) |
97 |
89 96
|
eqbrtrid |
⊢ ( 𝜑 → ( 1 − 1 ) < ( 𝑋 − 𝐼 ) ) |
98 |
|
zlem1lt |
⊢ ( ( 1 ∈ ℤ ∧ ( 𝑋 − 𝐼 ) ∈ ℤ ) → ( 1 ≤ ( 𝑋 − 𝐼 ) ↔ ( 1 − 1 ) < ( 𝑋 − 𝐼 ) ) ) |
99 |
84 88 98
|
syl2anc |
⊢ ( 𝜑 → ( 1 ≤ ( 𝑋 − 𝐼 ) ↔ ( 1 − 1 ) < ( 𝑋 − 𝐼 ) ) ) |
100 |
97 99
|
mpbird |
⊢ ( 𝜑 → 1 ≤ ( 𝑋 − 𝐼 ) ) |
101 |
19 20 27
|
ltled |
⊢ ( 𝜑 → ( 𝑋 − 𝐼 ) ≤ 𝑀 ) |
102 |
84 85 88 100 101
|
elfzd |
⊢ ( 𝜑 → ( 𝑋 − 𝐼 ) ∈ ( 1 ... 𝑀 ) ) |
103 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
104 |
84 103
|
ifcld |
⊢ ( 𝜑 → if ( 𝐼 ≤ ( 𝑋 − 𝐼 ) , 1 , 0 ) ∈ ℤ ) |
105 |
10
|
a1i |
⊢ ( 𝜑 → 𝐻 = if ( 𝐼 ≤ ( 𝑋 − 𝐼 ) , 1 , 0 ) ) |
106 |
105
|
eleq1d |
⊢ ( 𝜑 → ( 𝐻 ∈ ℤ ↔ if ( 𝐼 ≤ ( 𝑋 − 𝐼 ) , 1 , 0 ) ∈ ℤ ) ) |
107 |
104 106
|
mpbird |
⊢ ( 𝜑 → 𝐻 ∈ ℤ ) |
108 |
88 107
|
zaddcld |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐼 ) + 𝐻 ) ∈ ℤ ) |
109 |
13 83 102 108
|
fvmptd |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑋 − 𝐼 ) ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
110 |
12 109
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |