Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt31.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
metakunt31.2 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
3 |
|
metakunt31.3 |
⊢ ( 𝜑 → 𝐼 ≤ 𝑀 ) |
4 |
|
metakunt31.4 |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
5 |
|
metakunt31.5 |
⊢ 𝐴 = ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) |
6 |
|
metakunt31.6 |
⊢ 𝐵 = ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝑀 , if ( 𝑧 < 𝐼 , ( 𝑧 + ( 𝑀 − 𝐼 ) ) , ( 𝑧 + ( 1 − 𝐼 ) ) ) ) ) |
7 |
|
metakunt31.7 |
⊢ 𝐶 = ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) ) |
8 |
|
metakunt31.8 |
⊢ 𝐺 = if ( 𝐼 ≤ ( 𝑋 + ( 𝑀 − 𝐼 ) ) , 1 , 0 ) |
9 |
|
metakunt31.9 |
⊢ 𝐻 = if ( 𝐼 ≤ ( 𝑋 − 𝐼 ) , 1 , 0 ) |
10 |
|
metakunt31.10 |
⊢ 𝑅 = if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐼 ) → 𝑀 ∈ ℕ ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐼 ) → 𝐼 ∈ ℕ ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐼 ) → 𝐼 ≤ 𝑀 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐼 ) → 𝑋 = 𝐼 ) |
15 |
11 12 13 5 7 6 14
|
metakunt26 |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐼 ) → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = 𝑋 ) |
16 |
14
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐼 ) → if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) = 𝑋 ) |
17 |
16
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐼 ) → 𝑋 = if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) ) |
18 |
15 17
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐼 ) → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) ) |
19 |
10
|
eqcomi |
⊢ if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) = 𝑅 |
20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐼 ) → if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) = 𝑅 ) |
21 |
18 20
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐼 ) → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = 𝑅 ) |
22 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → 𝑀 ∈ ℕ ) |
23 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → 𝐼 ∈ ℕ ) |
24 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → 𝐼 ≤ 𝑀 ) |
25 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
26 |
|
simp2 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → ¬ 𝑋 = 𝐼 ) |
27 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → 𝑋 < 𝐼 ) |
28 |
22 23 24 25 5 6 26 27 7 8
|
metakunt29 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) ) |
29 |
26
|
iffalsed |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) = if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) |
30 |
27
|
iftrued |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) = ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) ) |
31 |
29 30
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) = ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) ) |
32 |
31
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) = if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) ) |
33 |
28 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) ) |
34 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) = 𝑅 ) |
35 |
33 34
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ 𝑋 < 𝐼 ) → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = 𝑅 ) |
36 |
35
|
3expa |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ) ∧ 𝑋 < 𝐼 ) → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = 𝑅 ) |
37 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → 𝑀 ∈ ℕ ) |
38 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → 𝐼 ∈ ℕ ) |
39 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → 𝐼 ≤ 𝑀 ) |
40 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
41 |
|
simp2 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → ¬ 𝑋 = 𝐼 ) |
42 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → ¬ 𝑋 < 𝐼 ) |
43 |
37 38 39 40 5 6 41 42 7 9
|
metakunt30 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
44 |
41
|
iffalsed |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) = if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) |
45 |
42
|
iffalsed |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
46 |
44 45
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) = ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) |
47 |
46
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → ( ( 𝑋 − 𝐼 ) + 𝐻 ) = if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) ) |
48 |
43 47
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) ) |
49 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → if ( 𝑋 = 𝐼 , 𝑋 , if ( 𝑋 < 𝐼 , ( ( 𝑋 + ( 𝑀 − 𝐼 ) ) + 𝐺 ) , ( ( 𝑋 − 𝐼 ) + 𝐻 ) ) ) = 𝑅 ) |
50 |
48 49
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ∧ ¬ 𝑋 < 𝐼 ) → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = 𝑅 ) |
51 |
50
|
3expa |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ) ∧ ¬ 𝑋 < 𝐼 ) → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = 𝑅 ) |
52 |
36 51
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝐼 ) → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = 𝑅 ) |
53 |
21 52
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) ) = 𝑅 ) |