| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt29.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt29.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt29.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt29.4 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 5 |  | metakunt29.5 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 6 |  | metakunt29.6 | ⊢ 𝐵  =  ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝑀 ,  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 7 |  | metakunt29.7 | ⊢ ( 𝜑  →  ¬  𝑋  =  𝐼 ) | 
						
							| 8 |  | metakunt29.8 | ⊢ ( 𝜑  →  𝑋  <  𝐼 ) | 
						
							| 9 |  | metakunt29.9 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 10 |  | metakunt29.10 | ⊢ 𝐻  =  if ( 𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | metakunt27 | ⊢ ( 𝜑  →  ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) )  =  ( 𝐶 ‘ ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) ) | 
						
							| 13 | 9 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 14 |  | elfznn | ⊢ ( 𝑋  ∈  ( 1 ... 𝑀 )  →  𝑋  ∈  ℕ ) | 
						
							| 15 | 4 14 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℕ ) | 
						
							| 16 |  | nnre | ⊢ ( 𝑋  ∈  ℕ  →  𝑋  ∈  ℝ ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 18 | 1 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 19 | 2 | nnred | ⊢ ( 𝜑  →  𝐼  ∈  ℝ ) | 
						
							| 20 | 18 19 | resubcld | ⊢ ( 𝜑  →  ( 𝑀  −  𝐼 )  ∈  ℝ ) | 
						
							| 21 | 17 20 | readdcld | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∈  ℝ ) | 
						
							| 22 | 17 | recnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 23 | 18 | recnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 24 | 19 | recnd | ⊢ ( 𝜑  →  𝐼  ∈  ℂ ) | 
						
							| 25 | 22 23 24 | addsub12d | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  =  ( 𝑀  +  ( 𝑋  −  𝐼 ) ) ) | 
						
							| 26 | 23 24 22 | subsub2d | ⊢ ( 𝜑  →  ( 𝑀  −  ( 𝐼  −  𝑋 ) )  =  ( 𝑀  +  ( 𝑋  −  𝐼 ) ) ) | 
						
							| 27 | 19 17 | resubcld | ⊢ ( 𝜑  →  ( 𝐼  −  𝑋 )  ∈  ℝ ) | 
						
							| 28 | 17 19 | posdifd | ⊢ ( 𝜑  →  ( 𝑋  <  𝐼  ↔  0  <  ( 𝐼  −  𝑋 ) ) ) | 
						
							| 29 | 8 28 | mpbid | ⊢ ( 𝜑  →  0  <  ( 𝐼  −  𝑋 ) ) | 
						
							| 30 | 27 29 | elrpd | ⊢ ( 𝜑  →  ( 𝐼  −  𝑋 )  ∈  ℝ+ ) | 
						
							| 31 | 18 30 | ltsubrpd | ⊢ ( 𝜑  →  ( 𝑀  −  ( 𝐼  −  𝑋 ) )  <  𝑀 ) | 
						
							| 32 | 26 31 | eqbrtrrd | ⊢ ( 𝜑  →  ( 𝑀  +  ( 𝑋  −  𝐼 ) )  <  𝑀 ) | 
						
							| 33 | 25 32 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝑀 ) | 
						
							| 34 | 21 33 | ltned | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ≠  𝑀 ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ≠  𝑀 ) | 
						
							| 36 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 37 | 36 | neeq1d | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( 𝑦  ≠  𝑀  ↔  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ≠  𝑀 ) ) | 
						
							| 38 | 35 37 | mpbird | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  𝑦  ≠  𝑀 ) | 
						
							| 39 | 38 | neneqd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ¬  𝑦  =  𝑀 ) | 
						
							| 40 | 39 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) | 
						
							| 41 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 42 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  𝐼  ∈  ℝ ) | 
						
							| 43 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  𝑋  ∈  ℝ ) | 
						
							| 44 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 45 | 44 42 | resubcld | ⊢ ( ( 𝜑  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( 𝑀  −  𝐼 )  ∈  ℝ ) | 
						
							| 46 | 43 45 | readdcld | ⊢ ( ( 𝜑  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∈  ℝ ) | 
						
							| 47 | 42 46 | lenltd | ⊢ ( ( 𝜑  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( 𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ↔  ¬  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 ) ) | 
						
							| 48 | 41 47 | mpbid | ⊢ ( ( 𝜑  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ¬  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 ) | 
						
							| 49 | 48 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ¬  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 ) | 
						
							| 50 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 51 | 50 | breq1d | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( 𝑦  <  𝐼  ↔  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 ) ) | 
						
							| 52 | 51 | notbid | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( ¬  𝑦  <  𝐼  ↔  ¬  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 ) ) | 
						
							| 53 | 49 52 | mpbird | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ¬  𝑦  <  𝐼 ) | 
						
							| 54 | 53 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( 𝑦  +  1 ) ) | 
						
							| 55 | 50 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( 𝑦  +  1 )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  1 ) ) | 
						
							| 56 | 54 55 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  1 ) ) | 
						
							| 57 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 58 | 57 | iftrued | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  if ( 𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 )  =  1 ) | 
						
							| 59 | 58 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  1  =  if ( 𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) | 
						
							| 60 | 59 10 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  1  =  𝐻 ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  1 )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 62 | 56 61 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 63 | 62 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  ∧  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 64 | 21 19 | ltnled | ⊢ ( 𝜑  →  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼  ↔  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) ) | 
						
							| 65 | 64 | biimprd | ⊢ ( 𝜑  →  ( ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 ) ) | 
						
							| 66 | 65 | imp | ⊢ ( ( 𝜑  ∧  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 ) | 
						
							| 67 | 66 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 ) | 
						
							| 68 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 69 | 68 | breq1d | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( 𝑦  <  𝐼  ↔  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 ) ) | 
						
							| 70 | 67 69 | mpbird | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  𝑦  <  𝐼 ) | 
						
							| 71 | 70 | iftrued | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  𝑦 ) | 
						
							| 72 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  𝑋  ∈  ℂ ) | 
						
							| 73 | 23 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  𝑀  ∈  ℂ ) | 
						
							| 74 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  𝐼  ∈  ℂ ) | 
						
							| 75 | 73 74 | subcld | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  ( 𝑀  −  𝐼 )  ∈  ℂ ) | 
						
							| 76 | 72 75 | addcld | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∈  ℂ ) | 
						
							| 77 | 76 | addridd | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  0 )  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 78 | 77 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  0 ) ) | 
						
							| 79 | 64 | biimpa | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 80 | 79 | iffalsed | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  if ( 𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 )  =  0 ) | 
						
							| 81 | 80 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  0  =  if ( 𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) | 
						
							| 82 | 10 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  𝐻  =  if ( 𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) | 
						
							| 83 | 82 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  if ( 𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 )  =  𝐻 ) | 
						
							| 84 | 81 83 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  0  =  𝐻 ) | 
						
							| 85 | 84 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  0 )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 86 | 78 85 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼 )  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 87 | 86 | ex | ⊢ ( 𝜑  →  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  <  𝐼  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) ) | 
						
							| 88 | 65 87 | syld | ⊢ ( 𝜑  →  ( ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) ) | 
						
							| 89 | 88 | imp | ⊢ ( ( 𝜑  ∧  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 90 | 89 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 91 | 68 90 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  𝑦  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 92 | 71 91 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∧  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 93 | 92 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  ∧  ¬  𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 94 | 63 93 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 95 | 40 94 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 96 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 97 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 98 | 15 | nnzd | ⊢ ( 𝜑  →  𝑋  ∈  ℤ ) | 
						
							| 99 | 2 | nnzd | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 100 | 97 99 | zsubcld | ⊢ ( 𝜑  →  ( 𝑀  −  𝐼 )  ∈  ℤ ) | 
						
							| 101 | 98 100 | zaddcld | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∈  ℤ ) | 
						
							| 102 |  | 1p0e1 | ⊢ ( 1  +  0 )  =  1 | 
						
							| 103 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 104 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 105 | 15 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑋 ) | 
						
							| 106 | 18 19 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( 𝑀  −  𝐼 )  ↔  𝐼  ≤  𝑀 ) ) | 
						
							| 107 | 3 106 | mpbird | ⊢ ( 𝜑  →  0  ≤  ( 𝑀  −  𝐼 ) ) | 
						
							| 108 | 103 104 17 20 105 107 | le2addd | ⊢ ( 𝜑  →  ( 1  +  0 )  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 109 | 102 108 | eqbrtrrid | ⊢ ( 𝜑  →  1  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ) | 
						
							| 110 | 21 18 33 | ltled | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ≤  𝑀 ) | 
						
							| 111 | 96 97 101 109 110 | elfzd | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 112 | 111 | elfzelzd | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑀  −  𝐼 ) )  ∈  ℤ ) | 
						
							| 113 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 114 | 96 113 | ifcld | ⊢ ( 𝜑  →  if ( 𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 )  ∈  ℤ ) | 
						
							| 115 | 10 | a1i | ⊢ ( 𝜑  →  𝐻  =  if ( 𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) | 
						
							| 116 | 115 | eleq1d | ⊢ ( 𝜑  →  ( 𝐻  ∈  ℤ  ↔  if ( 𝐼  ≤  ( 𝑋  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 )  ∈  ℤ ) ) | 
						
							| 117 | 114 116 | mpbird | ⊢ ( 𝜑  →  𝐻  ∈  ℤ ) | 
						
							| 118 | 112 117 | zaddcld | ⊢ ( 𝜑  →  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 )  ∈  ℤ ) | 
						
							| 119 | 13 95 111 118 | fvmptd | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝑋  +  ( 𝑀  −  𝐼 ) ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) | 
						
							| 120 | 12 119 | eqtrd | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑋 ) ) )  =  ( ( 𝑋  +  ( 𝑀  −  𝐼 ) )  +  𝐻 ) ) |