| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt32.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt32.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt32.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt32.4 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 5 |  | metakunt32.5 |  |-  D = ( x e. ( 1 ... M ) |-> if ( x = I , x , if ( x < I , ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) , ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) ) ) ) | 
						
							| 6 |  | metakunt32.6 |  |-  G = if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) | 
						
							| 7 |  | metakunt32.7 |  |-  H = if ( I <_ ( X - I ) , 1 , 0 ) | 
						
							| 8 |  | metakunt32.8 |  |-  R = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) | 
						
							| 9 | 5 | a1i |  |-  ( ph -> D = ( x e. ( 1 ... M ) |-> if ( x = I , x , if ( x < I , ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) , ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) ) ) ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ x = X ) -> x = X ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( ( ph /\ x = X ) -> ( x = I <-> X = I ) ) | 
						
							| 12 | 10 | breq1d |  |-  ( ( ph /\ x = X ) -> ( x < I <-> X < I ) ) | 
						
							| 13 |  | oveq1 |  |-  ( x = X -> ( x + ( M - I ) ) = ( X + ( M - I ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ x = X ) -> ( x + ( M - I ) ) = ( X + ( M - I ) ) ) | 
						
							| 15 | 14 | breq2d |  |-  ( ( ph /\ x = X ) -> ( I <_ ( x + ( M - I ) ) <-> I <_ ( X + ( M - I ) ) ) ) | 
						
							| 16 | 15 | ifbid |  |-  ( ( ph /\ x = X ) -> if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) = if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) ) | 
						
							| 17 | 14 16 | oveq12d |  |-  ( ( ph /\ x = X ) -> ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) = ( ( X + ( M - I ) ) + if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) ) ) | 
						
							| 18 | 6 | a1i |  |-  ( ( ph /\ x = X ) -> G = if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) ) | 
						
							| 19 | 18 | eqcomd |  |-  ( ( ph /\ x = X ) -> if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) = G ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( ph /\ x = X ) -> ( ( X + ( M - I ) ) + if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) ) = ( ( X + ( M - I ) ) + G ) ) | 
						
							| 21 | 17 20 | eqtrd |  |-  ( ( ph /\ x = X ) -> ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) = ( ( X + ( M - I ) ) + G ) ) | 
						
							| 22 | 10 | oveq1d |  |-  ( ( ph /\ x = X ) -> ( x - I ) = ( X - I ) ) | 
						
							| 23 | 22 | breq2d |  |-  ( ( ph /\ x = X ) -> ( I <_ ( x - I ) <-> I <_ ( X - I ) ) ) | 
						
							| 24 | 23 | ifbid |  |-  ( ( ph /\ x = X ) -> if ( I <_ ( x - I ) , 1 , 0 ) = if ( I <_ ( X - I ) , 1 , 0 ) ) | 
						
							| 25 | 22 24 | oveq12d |  |-  ( ( ph /\ x = X ) -> ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) = ( ( X - I ) + if ( I <_ ( X - I ) , 1 , 0 ) ) ) | 
						
							| 26 | 7 | a1i |  |-  ( ( ph /\ x = X ) -> H = if ( I <_ ( X - I ) , 1 , 0 ) ) | 
						
							| 27 | 26 | eqcomd |  |-  ( ( ph /\ x = X ) -> if ( I <_ ( X - I ) , 1 , 0 ) = H ) | 
						
							| 28 | 27 | oveq2d |  |-  ( ( ph /\ x = X ) -> ( ( X - I ) + if ( I <_ ( X - I ) , 1 , 0 ) ) = ( ( X - I ) + H ) ) | 
						
							| 29 | 25 28 | eqtrd |  |-  ( ( ph /\ x = X ) -> ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) = ( ( X - I ) + H ) ) | 
						
							| 30 | 12 21 29 | ifbieq12d |  |-  ( ( ph /\ x = X ) -> if ( x < I , ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) , ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) ) = if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) | 
						
							| 31 | 11 10 30 | ifbieq12d |  |-  ( ( ph /\ x = X ) -> if ( x = I , x , if ( x < I , ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) , ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) ) ) = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) | 
						
							| 32 | 8 | a1i |  |-  ( ( ph /\ x = X ) -> R = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) | 
						
							| 33 | 32 | eqcomd |  |-  ( ( ph /\ x = X ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = R ) | 
						
							| 34 | 31 33 | eqtrd |  |-  ( ( ph /\ x = X ) -> if ( x = I , x , if ( x < I , ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) , ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) ) ) = R ) | 
						
							| 35 | 4 | elfzelzd |  |-  ( ph -> X e. ZZ ) | 
						
							| 36 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 37 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 38 | 36 37 | zsubcld |  |-  ( ph -> ( M - I ) e. ZZ ) | 
						
							| 39 | 35 38 | zaddcld |  |-  ( ph -> ( X + ( M - I ) ) e. ZZ ) | 
						
							| 40 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 41 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 42 | 40 41 | ifcld |  |-  ( ph -> if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) e. ZZ ) | 
						
							| 43 | 6 | a1i |  |-  ( ph -> G = if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) ) | 
						
							| 44 | 43 | eleq1d |  |-  ( ph -> ( G e. ZZ <-> if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) e. ZZ ) ) | 
						
							| 45 | 42 44 | mpbird |  |-  ( ph -> G e. ZZ ) | 
						
							| 46 | 39 45 | zaddcld |  |-  ( ph -> ( ( X + ( M - I ) ) + G ) e. ZZ ) | 
						
							| 47 | 35 37 | zsubcld |  |-  ( ph -> ( X - I ) e. ZZ ) | 
						
							| 48 | 40 41 | ifcld |  |-  ( ph -> if ( I <_ ( X - I ) , 1 , 0 ) e. ZZ ) | 
						
							| 49 | 7 | a1i |  |-  ( ph -> H = if ( I <_ ( X - I ) , 1 , 0 ) ) | 
						
							| 50 | 49 | eleq1d |  |-  ( ph -> ( H e. ZZ <-> if ( I <_ ( X - I ) , 1 , 0 ) e. ZZ ) ) | 
						
							| 51 | 48 50 | mpbird |  |-  ( ph -> H e. ZZ ) | 
						
							| 52 | 47 51 | zaddcld |  |-  ( ph -> ( ( X - I ) + H ) e. ZZ ) | 
						
							| 53 | 46 52 | ifcld |  |-  ( ph -> if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) e. ZZ ) | 
						
							| 54 | 35 53 | ifcld |  |-  ( ph -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) e. ZZ ) | 
						
							| 55 | 8 | a1i |  |-  ( ph -> R = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) | 
						
							| 56 | 55 | eleq1d |  |-  ( ph -> ( R e. ZZ <-> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) e. ZZ ) ) | 
						
							| 57 | 54 56 | mpbird |  |-  ( ph -> R e. ZZ ) | 
						
							| 58 | 9 34 4 57 | fvmptd |  |-  ( ph -> ( D ` X ) = R ) |