Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt32.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt32.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt32.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt32.4 |
|- ( ph -> X e. ( 1 ... M ) ) |
5 |
|
metakunt32.5 |
|- D = ( x e. ( 1 ... M ) |-> if ( x = I , x , if ( x < I , ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) , ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) ) ) ) |
6 |
|
metakunt32.6 |
|- G = if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) |
7 |
|
metakunt32.7 |
|- H = if ( I <_ ( X - I ) , 1 , 0 ) |
8 |
|
metakunt32.8 |
|- R = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) |
9 |
5
|
a1i |
|- ( ph -> D = ( x e. ( 1 ... M ) |-> if ( x = I , x , if ( x < I , ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) , ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) ) ) ) ) |
10 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
11 |
10
|
eqeq1d |
|- ( ( ph /\ x = X ) -> ( x = I <-> X = I ) ) |
12 |
10
|
breq1d |
|- ( ( ph /\ x = X ) -> ( x < I <-> X < I ) ) |
13 |
|
oveq1 |
|- ( x = X -> ( x + ( M - I ) ) = ( X + ( M - I ) ) ) |
14 |
13
|
adantl |
|- ( ( ph /\ x = X ) -> ( x + ( M - I ) ) = ( X + ( M - I ) ) ) |
15 |
14
|
breq2d |
|- ( ( ph /\ x = X ) -> ( I <_ ( x + ( M - I ) ) <-> I <_ ( X + ( M - I ) ) ) ) |
16 |
15
|
ifbid |
|- ( ( ph /\ x = X ) -> if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) = if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) ) |
17 |
14 16
|
oveq12d |
|- ( ( ph /\ x = X ) -> ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) = ( ( X + ( M - I ) ) + if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) ) ) |
18 |
6
|
a1i |
|- ( ( ph /\ x = X ) -> G = if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) ) |
19 |
18
|
eqcomd |
|- ( ( ph /\ x = X ) -> if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) = G ) |
20 |
19
|
oveq2d |
|- ( ( ph /\ x = X ) -> ( ( X + ( M - I ) ) + if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) ) = ( ( X + ( M - I ) ) + G ) ) |
21 |
17 20
|
eqtrd |
|- ( ( ph /\ x = X ) -> ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) = ( ( X + ( M - I ) ) + G ) ) |
22 |
10
|
oveq1d |
|- ( ( ph /\ x = X ) -> ( x - I ) = ( X - I ) ) |
23 |
22
|
breq2d |
|- ( ( ph /\ x = X ) -> ( I <_ ( x - I ) <-> I <_ ( X - I ) ) ) |
24 |
23
|
ifbid |
|- ( ( ph /\ x = X ) -> if ( I <_ ( x - I ) , 1 , 0 ) = if ( I <_ ( X - I ) , 1 , 0 ) ) |
25 |
22 24
|
oveq12d |
|- ( ( ph /\ x = X ) -> ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) = ( ( X - I ) + if ( I <_ ( X - I ) , 1 , 0 ) ) ) |
26 |
7
|
a1i |
|- ( ( ph /\ x = X ) -> H = if ( I <_ ( X - I ) , 1 , 0 ) ) |
27 |
26
|
eqcomd |
|- ( ( ph /\ x = X ) -> if ( I <_ ( X - I ) , 1 , 0 ) = H ) |
28 |
27
|
oveq2d |
|- ( ( ph /\ x = X ) -> ( ( X - I ) + if ( I <_ ( X - I ) , 1 , 0 ) ) = ( ( X - I ) + H ) ) |
29 |
25 28
|
eqtrd |
|- ( ( ph /\ x = X ) -> ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) = ( ( X - I ) + H ) ) |
30 |
12 21 29
|
ifbieq12d |
|- ( ( ph /\ x = X ) -> if ( x < I , ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) , ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) ) = if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) |
31 |
11 10 30
|
ifbieq12d |
|- ( ( ph /\ x = X ) -> if ( x = I , x , if ( x < I , ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) , ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) ) ) = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) |
32 |
8
|
a1i |
|- ( ( ph /\ x = X ) -> R = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) |
33 |
32
|
eqcomd |
|- ( ( ph /\ x = X ) -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) = R ) |
34 |
31 33
|
eqtrd |
|- ( ( ph /\ x = X ) -> if ( x = I , x , if ( x < I , ( ( x + ( M - I ) ) + if ( I <_ ( x + ( M - I ) ) , 1 , 0 ) ) , ( ( x - I ) + if ( I <_ ( x - I ) , 1 , 0 ) ) ) ) = R ) |
35 |
4
|
elfzelzd |
|- ( ph -> X e. ZZ ) |
36 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
37 |
2
|
nnzd |
|- ( ph -> I e. ZZ ) |
38 |
36 37
|
zsubcld |
|- ( ph -> ( M - I ) e. ZZ ) |
39 |
35 38
|
zaddcld |
|- ( ph -> ( X + ( M - I ) ) e. ZZ ) |
40 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
41 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
42 |
40 41
|
ifcld |
|- ( ph -> if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) e. ZZ ) |
43 |
6
|
a1i |
|- ( ph -> G = if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) ) |
44 |
43
|
eleq1d |
|- ( ph -> ( G e. ZZ <-> if ( I <_ ( X + ( M - I ) ) , 1 , 0 ) e. ZZ ) ) |
45 |
42 44
|
mpbird |
|- ( ph -> G e. ZZ ) |
46 |
39 45
|
zaddcld |
|- ( ph -> ( ( X + ( M - I ) ) + G ) e. ZZ ) |
47 |
35 37
|
zsubcld |
|- ( ph -> ( X - I ) e. ZZ ) |
48 |
40 41
|
ifcld |
|- ( ph -> if ( I <_ ( X - I ) , 1 , 0 ) e. ZZ ) |
49 |
7
|
a1i |
|- ( ph -> H = if ( I <_ ( X - I ) , 1 , 0 ) ) |
50 |
49
|
eleq1d |
|- ( ph -> ( H e. ZZ <-> if ( I <_ ( X - I ) , 1 , 0 ) e. ZZ ) ) |
51 |
48 50
|
mpbird |
|- ( ph -> H e. ZZ ) |
52 |
47 51
|
zaddcld |
|- ( ph -> ( ( X - I ) + H ) e. ZZ ) |
53 |
46 52
|
ifcld |
|- ( ph -> if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) e. ZZ ) |
54 |
35 53
|
ifcld |
|- ( ph -> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) e. ZZ ) |
55 |
8
|
a1i |
|- ( ph -> R = if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) ) |
56 |
55
|
eleq1d |
|- ( ph -> ( R e. ZZ <-> if ( X = I , X , if ( X < I , ( ( X + ( M - I ) ) + G ) , ( ( X - I ) + H ) ) ) e. ZZ ) ) |
57 |
54 56
|
mpbird |
|- ( ph -> R e. ZZ ) |
58 |
9 34 4 57
|
fvmptd |
|- ( ph -> ( D ` X ) = R ) |