Metamath Proof Explorer


Theorem metakunt32

Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024)

Ref Expression
Hypotheses metakunt32.1 φM
metakunt32.2 φI
metakunt32.3 φIM
metakunt32.4 φX1M
metakunt32.5 D=x1Mifx=Ixifx<Ix+MI+ifIx+M-I10x-I+ifIxI10
metakunt32.6 G=ifIX+M-I10
metakunt32.7 H=ifIXI10
metakunt32.8 R=ifX=IXifX<IX+MI+GX-I+H
Assertion metakunt32 φDX=R

Proof

Step Hyp Ref Expression
1 metakunt32.1 φM
2 metakunt32.2 φI
3 metakunt32.3 φIM
4 metakunt32.4 φX1M
5 metakunt32.5 D=x1Mifx=Ixifx<Ix+MI+ifIx+M-I10x-I+ifIxI10
6 metakunt32.6 G=ifIX+M-I10
7 metakunt32.7 H=ifIXI10
8 metakunt32.8 R=ifX=IXifX<IX+MI+GX-I+H
9 5 a1i φD=x1Mifx=Ixifx<Ix+MI+ifIx+M-I10x-I+ifIxI10
10 simpr φx=Xx=X
11 10 eqeq1d φx=Xx=IX=I
12 10 breq1d φx=Xx<IX<I
13 oveq1 x=Xx+M-I=X+M-I
14 13 adantl φx=Xx+M-I=X+M-I
15 14 breq2d φx=XIx+M-IIX+M-I
16 15 ifbid φx=XifIx+M-I10=ifIX+M-I10
17 14 16 oveq12d φx=Xx+MI+ifIx+M-I10=X+MI+ifIX+M-I10
18 6 a1i φx=XG=ifIX+M-I10
19 18 eqcomd φx=XifIX+M-I10=G
20 19 oveq2d φx=XX+MI+ifIX+M-I10=X+MI+G
21 17 20 eqtrd φx=Xx+MI+ifIx+M-I10=X+MI+G
22 10 oveq1d φx=XxI=XI
23 22 breq2d φx=XIxIIXI
24 23 ifbid φx=XifIxI10=ifIXI10
25 22 24 oveq12d φx=Xx-I+ifIxI10=X-I+ifIXI10
26 7 a1i φx=XH=ifIXI10
27 26 eqcomd φx=XifIXI10=H
28 27 oveq2d φx=XX-I+ifIXI10=X-I+H
29 25 28 eqtrd φx=Xx-I+ifIxI10=X-I+H
30 12 21 29 ifbieq12d φx=Xifx<Ix+MI+ifIx+M-I10x-I+ifIxI10=ifX<IX+MI+GX-I+H
31 11 10 30 ifbieq12d φx=Xifx=Ixifx<Ix+MI+ifIx+M-I10x-I+ifIxI10=ifX=IXifX<IX+MI+GX-I+H
32 8 a1i φx=XR=ifX=IXifX<IX+MI+GX-I+H
33 32 eqcomd φx=XifX=IXifX<IX+MI+GX-I+H=R
34 31 33 eqtrd φx=Xifx=Ixifx<Ix+MI+ifIx+M-I10x-I+ifIxI10=R
35 4 elfzelzd φX
36 1 nnzd φM
37 2 nnzd φI
38 36 37 zsubcld φMI
39 35 38 zaddcld φX+M-I
40 1zzd φ1
41 0zd φ0
42 40 41 ifcld φifIX+M-I10
43 6 a1i φG=ifIX+M-I10
44 43 eleq1d φGifIX+M-I10
45 42 44 mpbird φG
46 39 45 zaddcld φX+MI+G
47 35 37 zsubcld φXI
48 40 41 ifcld φifIXI10
49 7 a1i φH=ifIXI10
50 49 eleq1d φHifIXI10
51 48 50 mpbird φH
52 47 51 zaddcld φX-I+H
53 46 52 ifcld φifX<IX+MI+GX-I+H
54 35 53 ifcld φifX=IXifX<IX+MI+GX-I+H
55 8 a1i φR=ifX=IXifX<IX+MI+GX-I+H
56 55 eleq1d φRifX=IXifX<IX+MI+GX-I+H
57 54 56 mpbird φR
58 9 34 4 57 fvmptd φDX=R