Metamath Proof Explorer


Theorem mirf1o

Description: The point inversion function M is a bijection. Theorem 7.11 of Schwabhauser p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019)

Ref Expression
Hypotheses mirval.p
|- P = ( Base ` G )
mirval.d
|- .- = ( dist ` G )
mirval.i
|- I = ( Itv ` G )
mirval.l
|- L = ( LineG ` G )
mirval.s
|- S = ( pInvG ` G )
mirval.g
|- ( ph -> G e. TarskiG )
mirval.a
|- ( ph -> A e. P )
mirfv.m
|- M = ( S ` A )
Assertion mirf1o
|- ( ph -> M : P -1-1-onto-> P )

Proof

Step Hyp Ref Expression
1 mirval.p
 |-  P = ( Base ` G )
2 mirval.d
 |-  .- = ( dist ` G )
3 mirval.i
 |-  I = ( Itv ` G )
4 mirval.l
 |-  L = ( LineG ` G )
5 mirval.s
 |-  S = ( pInvG ` G )
6 mirval.g
 |-  ( ph -> G e. TarskiG )
7 mirval.a
 |-  ( ph -> A e. P )
8 mirfv.m
 |-  M = ( S ` A )
9 1 2 3 4 5 6 7 8 mirf
 |-  ( ph -> M : P --> P )
10 9 ffnd
 |-  ( ph -> M Fn P )
11 6 adantr
 |-  ( ( ph /\ a e. P ) -> G e. TarskiG )
12 7 adantr
 |-  ( ( ph /\ a e. P ) -> A e. P )
13 simpr
 |-  ( ( ph /\ a e. P ) -> a e. P )
14 1 2 3 4 5 11 12 8 13 mirmir
 |-  ( ( ph /\ a e. P ) -> ( M ` ( M ` a ) ) = a )
15 14 ralrimiva
 |-  ( ph -> A. a e. P ( M ` ( M ` a ) ) = a )
16 nvocnv
 |-  ( ( M : P --> P /\ A. a e. P ( M ` ( M ` a ) ) = a ) -> `' M = M )
17 9 15 16 syl2anc
 |-  ( ph -> `' M = M )
18 nvof1o
 |-  ( ( M Fn P /\ `' M = M ) -> M : P -1-1-onto-> P )
19 10 17 18 syl2anc
 |-  ( ph -> M : P -1-1-onto-> P )