Metamath Proof Explorer


Theorem mirf1o

Description: The point inversion function M is a bijection. Theorem 7.11 of Schwabhauser p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
mirval.a ( 𝜑𝐴𝑃 )
mirfv.m 𝑀 = ( 𝑆𝐴 )
Assertion mirf1o ( 𝜑𝑀 : 𝑃1-1-onto𝑃 )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 mirval.a ( 𝜑𝐴𝑃 )
8 mirfv.m 𝑀 = ( 𝑆𝐴 )
9 1 2 3 4 5 6 7 8 mirf ( 𝜑𝑀 : 𝑃𝑃 )
10 9 ffnd ( 𝜑𝑀 Fn 𝑃 )
11 6 adantr ( ( 𝜑𝑎𝑃 ) → 𝐺 ∈ TarskiG )
12 7 adantr ( ( 𝜑𝑎𝑃 ) → 𝐴𝑃 )
13 simpr ( ( 𝜑𝑎𝑃 ) → 𝑎𝑃 )
14 1 2 3 4 5 11 12 8 13 mirmir ( ( 𝜑𝑎𝑃 ) → ( 𝑀 ‘ ( 𝑀𝑎 ) ) = 𝑎 )
15 14 ralrimiva ( 𝜑 → ∀ 𝑎𝑃 ( 𝑀 ‘ ( 𝑀𝑎 ) ) = 𝑎 )
16 nvocnv ( ( 𝑀 : 𝑃𝑃 ∧ ∀ 𝑎𝑃 ( 𝑀 ‘ ( 𝑀𝑎 ) ) = 𝑎 ) → 𝑀 = 𝑀 )
17 9 15 16 syl2anc ( 𝜑 𝑀 = 𝑀 )
18 nvof1o ( ( 𝑀 Fn 𝑃 𝑀 = 𝑀 ) → 𝑀 : 𝑃1-1-onto𝑃 )
19 10 17 18 syl2anc ( 𝜑𝑀 : 𝑃1-1-onto𝑃 )