| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mirval.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mirval.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | mirval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | mirval.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | mirval.s | ⊢ 𝑆  =  ( pInvG ‘ 𝐺 ) | 
						
							| 6 |  | mirval.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 7 |  | mirval.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 8 |  | mirfv.m | ⊢ 𝑀  =  ( 𝑆 ‘ 𝐴 ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | mirf | ⊢ ( 𝜑  →  𝑀 : 𝑃 ⟶ 𝑃 ) | 
						
							| 10 | 9 | ffnd | ⊢ ( 𝜑  →  𝑀  Fn  𝑃 ) | 
						
							| 11 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑃 )  →  𝐺  ∈  TarskiG ) | 
						
							| 12 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑃 )  →  𝐴  ∈  𝑃 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑃 )  →  𝑎  ∈  𝑃 ) | 
						
							| 14 | 1 2 3 4 5 11 12 8 13 | mirmir | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑃 )  →  ( 𝑀 ‘ ( 𝑀 ‘ 𝑎 ) )  =  𝑎 ) | 
						
							| 15 | 14 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑃 ( 𝑀 ‘ ( 𝑀 ‘ 𝑎 ) )  =  𝑎 ) | 
						
							| 16 |  | nvocnv | ⊢ ( ( 𝑀 : 𝑃 ⟶ 𝑃  ∧  ∀ 𝑎  ∈  𝑃 ( 𝑀 ‘ ( 𝑀 ‘ 𝑎 ) )  =  𝑎 )  →  ◡ 𝑀  =  𝑀 ) | 
						
							| 17 | 9 15 16 | syl2anc | ⊢ ( 𝜑  →  ◡ 𝑀  =  𝑀 ) | 
						
							| 18 |  | nvof1o | ⊢ ( ( 𝑀  Fn  𝑃  ∧  ◡ 𝑀  =  𝑀 )  →  𝑀 : 𝑃 –1-1-onto→ 𝑃 ) | 
						
							| 19 | 10 17 18 | syl2anc | ⊢ ( 𝜑  →  𝑀 : 𝑃 –1-1-onto→ 𝑃 ) |